Integrating climate change and management scenarios in population models to guide the conservation of marine turtles

被引:9
|
作者
Jensen, Michael P. [1 ,2 ]
Eguchi, Tomoharu [3 ]
FitzSimmons, Nancy N. [2 ]
McCarthy, Michael A. [4 ]
Fuentes, Mariana M. P. B. [5 ]
Hamann, Mark [6 ]
Limpus, Colin J. [7 ]
Bell, Ian P. [8 ]
Read, Mark A. [9 ]
机构
[1] Aalborg Univ, Dept Chem & Biosci, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
[2] Griffith Univ, Australian Rivers Inst, Nathan, Qld 4111, Australia
[3] NOAA, Natl Marine Fisheries Serv, Southwest Fisheries Sci Ctr, 8901 La Jolla Shores Dr, La Jolla, CA 92037 USA
[4] Univ Melbourne, Sch Bot, Australian Res Ctr Urban Ecol, Parkville, Vic 3010, Australia
[5] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Marine Turtle Res Ecol & Conservat Grp, Tallahassee, FL 32306 USA
[6] James Cook Univ, Sch Earth & Environm Sci, Townsville, Qld 4811, Australia
[7] Dept Environm & Sci, POB 2454, Brisbane, Qld 4001, Australia
[8] Dept Environm & Sci, POB 375, Garbutt East, Qld 4814, Australia
[9] Great Barrier Reef Marine Pk Author, POB 1379, Townsville, Qld 4810, Australia
关键词
DEPENDENT SEX DETERMINATION; PROMISCUOUS GREEN TURTLE; CHELONIA-MYDAS; GROWTH-RATES; RESEARCH PRIORITIES; OCEANIC DISPERSAL; CARRYING-CAPACITY; LEVEL RISE; TEMPERATURE; MITOCHONDRIAL;
D O I
10.5343/bms.2021.0033
中图分类号
Q17 [水生生物学];
学科分类号
071004 ;
摘要
The globally significant green turtle (Chelonia mydas) population in the northern Great Barrier Reef is threatened by anthropogenic pressures, including climate change, habitat degradation, and indigenous harvest. Evidence suggesting the population is producing an extreme proportion of females due to increasing temperatures, coupled with temperature-dependent sex determination, is concerning. In response, and to explore management options, we developed two density-independent, stochastic stage structured metapopulation models: a "Moderate Climate Model" and an "Extreme Climate Model". The models differ based on climate change projections by incorporating increased female hatchling sex ratios due to global warming and loss of nesting habitat due to sea level rise. The models were based on demographic data from field studies at major rookeries and regional foraging grounds and allowed for variation in operational sex ratios, management actions, and levels of indigenous harvest. Under the Moderate Climate Model, population size increased but could be vulnerable to overharvest of adult females. If overharvest was indicated, the harvest of a proportion of subadults rather than only adult females reduced population declines. Under the Extreme Climate Model, there was a steep population decline even without any harvest and harvesting subadults accelerated population decline due to the inclusion of subadult males. In the Extreme Climate Model, reversal of population decline depended on male turtles mating with an increased number of females, or management actions to substantially increase the number of male hatchlings produced.
引用
收藏
页码:131 / 154
页数:24
相关论文
共 50 条
  • [1] Climate change, scenarios and marine biodiversity conservation
    Haward, Marcus
    Davidson, Julie
    Lockwood, Michael
    Hockings, Marc
    Kriwoken, Lorne
    Allchin, Robyn
    MARINE POLICY, 2013, 38 : 438 - 446
  • [2] Integrating connectivity and climate change into marine conservation planning
    Magris, Rafael A.
    Pressey, Robert L.
    Weeks, Rebecca
    Ban, Natalie C.
    BIOLOGICAL CONSERVATION, 2014, 170 : 207 - 221
  • [3] VULNERABILITY OF MARINE TURTLES TO CLIMATE CHANGE
    Poloczanska, Elvira S.
    Limpus, Colin J.
    Hays, Graeme C.
    ADVANCES IN MARINE BIOLOGY, VOL 56, 2009, 56 : 151 - 211
  • [4] Is this what a climate change-resilient population of marine turtles looks like?
    Abella Perez, E.
    Marco, A.
    Martins, S.
    Hawkes, L. A.
    BIOLOGICAL CONSERVATION, 2016, 193 : 124 - 132
  • [5] Simulated growth and reproduction of green turtles (Chelonia mydas) under climate change and marine heatwave scenarios
    Stubbs, Jessica L.
    Marn, Nina
    Vanderklift, Mathew A.
    Fossette, Sabrina
    Mitchell, Nicola J.
    ECOLOGICAL MODELLING, 2020, 431 (431)
  • [6] Integrating customary management into marine conservation
    Cinner, Joshua E.
    Aswani, Shankar
    BIOLOGICAL CONSERVATION, 2007, 140 (3-4) : 201 - 216
  • [7] Tools for integrating range change, extinction risk and climate change information into conservation management
    Fordham, Damien A.
    Akcakaya, H. Resit
    Araujo, Miguel B.
    Keith, David A.
    Brook, Barry W.
    ECOGRAPHY, 2013, 36 (09) : 956 - 964
  • [8] Marine climate change and conservation priorities
    Sheppard, Charles
    ORYX, 2007, 41 (01) : 1 - 2
  • [9] Priorities for Mediterranean marine turtle conservation and management in the face of climate change
    Mazaris, Antonios D.
    Dimitriadis, Charalampos
    Papazekou, Maria
    Schofield, Gail
    Doxa, Aggeliki
    Chatzimentor, Anastasia
    Turkozan, Oguz
    Katsanevakis, Stelios
    Lioliou, Aphrodite
    Abalo-Morla, Sara
    Aksissou, Mustapha
    Arcangeli, Antonella
    Attard, Vincent
    El Hili, Hedia Attia
    Atzori, Fabrizio
    Belda, Eduardo J.
    Ben Nakhla, Lobna
    Berbash, Ali A.
    Bjorndal, Karen A.
    Broderick, Annette C.
    Caminas, Juan A.
    Candan, Onur
    Cardona, Luis
    Cetkovic, Ilija
    Dakik, Nabigha
    de Lucia, Giuseppe Andrea
    Dimitrakopoulos, Panayiotis G.
    Diryaq, Salih
    Favilli, Costanza
    Fortuna, Caterina Maria
    Fuller, Wayne J.
    Gallon, Susan
    Hamza, Abdulmaula
    Jribi, Imed
    Ben Ismail, Manel
    Kamarianakis, Yiannis
    Kaska, Yakup
    Korro, Kastriot
    Koutsoubas, Drosos
    Lauriano, Giancarlo
    Lazar, Bojan
    March, David
    Marco, Adolfo
    Minotou, Charikleia
    Monsinjon, Jonathan R.
    Naguib, Nahla M.
    Palialexis, Andreas
    Piroli, Vilma
    Sami, Karaa
    Sonmez, Bektas
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 339
  • [10] Climate change scenarios in fisheries and aquatic conservation research
    Burgess, M. G.
    Becker, S. L.
    Langendorf, R. E.
    Fredston, A.
    Brooks, C. M.
    ICES JOURNAL OF MARINE SCIENCE, 2023, 80 (05) : 1163 - 1178