Vortices in high-performance high-temperature superconductors

被引:208
|
作者
Kwok, Wai-Kwong [1 ]
Welp, Ulrich [1 ]
Glatz, Andreas [1 ,2 ]
Koshelev, Alexei E. [1 ]
Kihlstrom, Karen J. [1 ,3 ]
Crabtree, George W. [1 ,3 ]
机构
[1] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA
[3] Univ Illinois, Dept Phys Elect & Mech Engn, Chicago, IL 60607 USA
关键词
superconductivity; critical current; vortex matter; vortex pinning; superconducting wires; time-dependent Ginzburg-Landau; GINZBURG-LANDAU EQUATIONS; CRITICAL-CURRENT-DENSITY; LATTICE MELTING TRANSITION; PB-ION IRRADIATION; FLUX-LINE-LATTICE; COMPUTER-SIMULATION; COATED CONDUCTORS; CRITICAL CURRENTS; RADIATION-DAMAGE; COLUMNAR DEFECTS;
D O I
10.1088/0034-4885/79/11/116501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The behavior of vortex matter in high-temperature superconductors (HTS) controls the entire electromagnetic response of the material, including its current carrying capacity. Here, we review the basic concepts of vortex pinning and its application to a complex mixed pinning landscape to enhance the critical current and to reduce its anisotropy. We focus on recent scientific advances that have resulted in large enhancements of the in-field critical current in state-of-the-art second generation (2G) YBCO coated conductors and on the prospect of an isotropic, high-critical current superconductor in the iron-based superconductors. Lastly, we discuss an emerging new paradigm of critical current by design-a drive to achieve a quantitative correlation between the observed critical current density and mesoscale mixed pinning landscapes by using realistic input parameters in an innovative and powerful large-scale time dependent Ginzburg-Landau approach to simulating vortex dynamics.
引用
收藏
页数:39
相关论文
共 50 条
  • [1] VORTICES IN HIGH-TEMPERATURE SUPERCONDUCTORS
    BLATTER, G
    FEIGELMAN, MV
    GESHKENBEIN, VB
    LARKIN, AI
    VINOKUR, VM
    REVIEWS OF MODERN PHYSICS, 1994, 66 (04) : 1125 - 1388
  • [2] Pseudogap and vortices in high-temperature superconductors
    Maska, M
    Mierzejewski, M
    ACTA PHYSICA POLONICA A, 2004, 106 (05) : 569 - 574
  • [3] Pinning of vortices in high-temperature superconductors
    Brandt, EH
    SUPERLATTICES AND MICROSTRUCTURES, 1997, 21 : 1 - 9
  • [4] FUNDAMENTALS OF VORTICES IN THE HIGH-TEMPERATURE SUPERCONDUCTORS
    CLEM, JR
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 1992, 5 : S33 - S40
  • [5] Pinning of vortices in high-temperature superconductors
    Brandt, E.H.
    Superlattices and Microstructures, 1997, 21 (Suppl A): : 1 - 9
  • [6] CHARGED VORTICES IN HIGH-TEMPERATURE SUPERCONDUCTORS
    KHOMSKII, DI
    FREIMUTH, A
    PHYSICAL REVIEW LETTERS, 1995, 75 (07) : 1384 - 1386
  • [7] A high-performance electromagnetic code to simulate high-temperature superconductors
    Soba, A.
    Fernandez-Serracanta, O.
    Lorenzo, J.
    Garcin, D.
    Houzeaux, G.
    Lamas, N.
    Granados, X.
    Mantsinen, M. J.
    FUSION ENGINEERING AND DESIGN, 2024, 201
  • [8] HALL TUNNELING OF VORTICES IN HIGH-TEMPERATURE SUPERCONDUCTORS
    FEIGELMAN, MV
    GESHKENBEIN, VB
    LARKIN, AI
    LEVIT, S
    JETP LETTERS, 1993, 57 (11) : 711 - 716
  • [9] High-temperature superconductors: Vortices wiggled and dragged
    Los Alamos National Laboratory, T-13, MS B213, Los Alamos, NM 87545, United States
    Nat. Phys., 2009, 1 (15-16):
  • [10] Singular and nonsingular vortices in high-temperature superconductors
    Bystrov, AS
    Mel'nikov, AS
    Ryzhov, DA
    Nefedov, IM
    Shereshevskii, IA
    Vysheslavtsev, PP
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2003, 388 : 657 - 658