Rayleigh-Bernard convection of non-Newtonian fluid

被引:0
|
作者
Skerget, L [1 ]
Samec, N [1 ]
机构
[1] Univ Maribor, Fac Mech Engn, SLO-2000 Maribor, Slovenia
来源
BOUNDARY ELEMENTS XX | 1998年 / 4卷
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The main purpose of this work is to present the use of boundary-domain integral method to analyse the flow behaviour of non-Newtonian fluid, ie. power law fluid. The available parametric model is applied representing a non-linear dependence between shear rate and deformation velocity. To evaluate the presented approach the Rayleigh-Benard natural convection of the Newtonian and non-Newtonian fluid has been solved.
引用
收藏
页码:429 / 440
页数:12
相关论文
共 50 条
  • [1] Experiments with Rayleigh-Bernard convection
    Ahlers, G
    DYNAMICS OF SPATIO-TEMPORAL CELLULAR STRUCTURES: HENRI BENARD CENTENARY REVIEW, 2006, 207 : 67 - 94
  • [2] Mechanisms of extensive spatiotemporal chaos in Rayleigh-Bernard convection
    Egolf, DA
    Melnikov, IV
    Pesch, W
    Ecke, RE
    NATURE, 2000, 404 (6779) : 733 - 736
  • [3] Rayleigh-Bernard Convection in a Slightly Inclined Porous Cavity.
    Walch, J.P.
    Dulieu, B.
    Journal de physique. Lettres, 1982, 43 (04): : 103 - 107
  • [4] Rayleigh-Bernard convection as a model of a nonlinear system: A personal view
    Pomeau, Y
    DYNAMICS OF SPATIO-TEMPORAL CELLULAR STRUCTURES: HENRI BENARD CENTENARY REVIEW, 2006, 207 : 95 - 102
  • [5] Unsteady thermal convection of a non-Newtonian fluid
    Demir, H
    Akyildiz, FT
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2000, 38 (17) : 1923 - 1938
  • [6] The Taylor-Couette flow: The hydrodynamic twin of Rayleigh-Bernard convection
    Prigent, A
    Dubrulle, B
    Dauchot, O
    Mutabazi, I
    DYNAMICS OF SPATIO-TEMPORAL CELLULAR STRUCTURES: HENRI BENARD CENTENARY REVIEW, 2006, 207 : 225 - 242
  • [7] An experimental study of the influence of a rotating magnetic field on Rayleigh-Bernard convection
    Volz, MP
    Mazuruk, K
    JOURNAL OF FLUID MECHANICS, 2001, 444 : 79 - 98
  • [8] Laminar and turbulent Rayleigh-Bernard convection in a perfectly conducting cubical cavity
    Pallares, J
    Cuesta, I
    Grau, FX
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2002, 23 (03) : 346 - 358
  • [9] Optimal control of vorticity in Rayleigh-Bernard convection by finite element method
    Marin, M
    Kawahara, M
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1998, 14 (01): : 9 - 22
  • [10] RAYLEIGH AND STOKES PROBLEMS WITH AN INCOMPRESSIBLE NON-NEWTONIAN FLUID
    SCHWARZ, WH
    APPLIED SCIENTIFIC RESEARCH SECTION A-MECHANICS HEAT CHEMICAL ENGINEERING MATHEMATICAL METHODS, 1964, 13 (2-3): : 161 - &