EXPLICIT MODEL FOR BENDING EDGE WAVE ON AN ELASTIC ORTHOTROPIC PLATE SUPPORTED BY THE WINKLER-FUSS FOUNDATION

被引:6
|
作者
Althobaiti, Saad N. [1 ]
Nikonov, Anatolij [2 ]
Prikazchikov, Danila [3 ,4 ]
机构
[1] Taif Univ, Ranyah Univ Coll, Dept Sci & Technol, At Taif 21944, Saudi Arabia
[2] Fac Ind Engn Novo Mesto, Dept Mech Design & Comp Engn, Novo Mesto 8000, Slovenia
[3] Keele Univ, Sch Comp & Math, Keele ST5 5BG, Staffs, England
[4] Al Farabi Kazakh Natl Univ, Fac Mech & Math, Alma Ata, Kazakhstan
关键词
elastic; plate; bending; edge wave; explicit model; EXISTENCE;
D O I
10.2140/jomms.2021.16.543
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper is concerned with a bending edge wave on a thin orthotropic elastic plate resting on a Winkler-Fuss foundation. The main focus of the contribution is on derivation of a specialised reduced model accounting for the contribution of the bending edge wave to the overall dynamic response, allowing simplified analysis for a number of dynamic problems. The developed formulation includes an elliptic equation associated with decay over the interior, and a beam-like equation on the edge governing wave propagation accounting for both bending moment and modified shear force excitation, thus highlighting a dual parabolic-elliptic nature of the bending edge wave. A model example illustrates the benefits of the approach.
引用
收藏
页码:543 / 554
页数:12
相关论文
共 38 条
  • [1] Edge bending wave on a thin elastic plate resting on a Winkler foundation
    Kaplunov, J.
    Prikazchikov, D. A.
    Rogerson, G. A.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2190):
  • [2] An edge moving load on an orthotropic plate resting on a Winkler foundation
    Althobaiti, Saad N.
    Kaplunov, Julius
    Prikazchikov, Danila A.
    X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 2017, 199 : 2579 - 2584
  • [4] IMPACT OF AN ELASTIC SPHERE ON A THIN ELASTIC PLATE SUPPORTED BY A WINKLER FOUNDATION
    FISHER, HD
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1975, 42 (01): : 133 - 135
  • [5] Unsteady elastic diffusion bending model for a Timoshenko beam on a Winkler foundation: unsteady elastic diffusion bending model for a Timoshenko beam on a Winkler foundation
    Zemskov, A., V
    Tarlakovskii, D., V
    ARCHIVE OF APPLIED MECHANICS, 2022, 92 (04) : 1355 - 1366
  • [6] Bending analysis of orthotropic thin plate on graded elastic foundation
    Li, Huadong
    Zhu, Xi
    Mei, Zhiyuan
    Zhang, Yingjun
    Qiu, Jiabo
    Guti Lixue Xuebao/Acta Mechanica Solida Sinica, 2012, 33 (04): : 431 - 436
  • [7] Unsteady elastic diffusion bending model for a Timoshenko beam on a Winkler foundation: unsteady elastic diffusion bending model for a Timoshenko beam on a Winkler foundation
    A. V. Zemskov
    D. V. Tarlakovskii
    Archive of Applied Mechanics, 2022, 92 : 1355 - 1366
  • [8] Macroelement Analysis of Thin Orthotropic Polygonal Plate Resting on the Elastic Winkler's Foundation
    Delyavskyy, Mykhaylo
    Rosinski, Krystian
    Zdolbicka, Nina
    Bilash, Oksana
    SCIENTIFIC SESSION ON APPLIED MECHANICS X, 2019, 2077
  • [9] Peridynamic Model for a Mindlin Plate Resting on a Winkler Elastic Foundation
    Vazic B.
    Oterkus E.
    Oterkus S.
    Journal of Peridynamics and Nonlocal Modeling, 2020, 2 (3) : 229 - 242
  • [10] Symplectic system based analytical solution for bending of rectangular orthotropic plates on Winkler elastic foundation
    Wei-An Yao · Xiao-Fei Hu · Feng Xiao State Key Laboratory of Structural Analysis for Industrial Equipment
    Acta Mechanica Sinica, 2011, (06) : 929 - 937