Selberg's orthogonality conjecture and symmetric power L-functions

被引:0
|
作者
Wong, Peng-Jie [1 ]
机构
[1] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada
关键词
Selberg's orthogonality conjecture; Symmetric power L-functions;
D O I
10.1016/j.jnt.2021.11.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pi be a cuspidal representation of GL(2)(A(Q)) defined by a non-CM holomorphic newform of weight w >= 2, and let K/Q be a totally real Galois extension with Galois group G. In this article, under Selberg's orthogonality conjecture, we show that for any irreducible character chi of G, the twisted symmetric power L-function L(s, Sym(m) pi x chi) is a primitive function in the Selberg class, and it is automorphic subject to further the solvability of K/Q. The key new idea is to apply the work of Barnet-Lamb, Geraghty, Harris, and Taylor on the potential automorphy of Sym(m) pi. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:967 / 977
页数:11
相关论文
共 50 条