A quantum-geometrical description of fracton statistics

被引:3
|
作者
Da Cruz, W [1 ]
机构
[1] Univ Estadual Londrina, Dept Fis, BR-86051970 Londrina, PR, Brazil
来源
关键词
fractal distribution function; fractal von Neumann entropy; fractional quantum Hall effect;
D O I
10.1142/S0217751X03015672
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We consider the fractal characteristic of the quantum mechanical paths and we obtain for any universal class of fractons labeled by the Hausdorff dimension defined within the interval 1 < h < 2, a fractal distribution function associated with a fractal von Newmann entropy. Fractons are charge-flux systems defined in two-dimensional multiply connected space and they carry rational or irrational values of spin. This formulation can be considered in the context of the fractional quantum Hall effect-FQHE and number theory.
引用
收藏
页码:2213 / 2219
页数:7
相关论文
共 50 条
  • [1] Geometrical statistics - Classical and quantum
    Bengtsson, I
    QUANTUM THEORY: RECONSIDERATION OF FOUNDATIONS - 3, 2006, 810 : 59 - 66
  • [2] Fracton fusion and statistics
    Pai, Shriya
    Hermele, Michael
    PHYSICAL REVIEW B, 2019, 100 (19)
  • [3] A geometrical description of quantum mechanics
    Majernik, V
    PHYSICS ESSAYS, 1996, 9 (03) : 419 - 428
  • [4] ON A GEOMETRICAL DESCRIPTION OF QUANTUM MECHANICS
    Novello, M.
    Salim, J. M.
    Falciano, F. T.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (01) : 87 - 98
  • [5] Fracton Self-Statistics
    Song, Hao
    Tantivasadakarn, Nathanan
    Shirley, Wilbur
    Hermele, Michael
    PHYSICAL REVIEW LETTERS, 2024, 132 (01)
  • [6] ON THE GEOMETRICAL INTERPRETATION OF FRACTON AND FRACTAL DIMENSIONALITY
    TSALLIS, C
    MAYNARD, R
    PHYSICS LETTERS A, 1988, 129 (02) : 118 - 120
  • [7] Geometrical Description of the Fractional Quantum Hall Effect
    Haldane, F. D. M.
    PHYSICAL REVIEW LETTERS, 2011, 107 (11)
  • [8] Quantum Carroll/fracton particles
    Figueroa-O'Farrill, Jose
    Perez, Alfredo
    Prohazka, Stefan
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (10)
  • [9] Quantum robustness of fracton phases
    Muehlhauser, M.
    Walther, M. R.
    Reiss, D. A.
    Schmidt, K. P.
    PHYSICAL REVIEW B, 2020, 101 (05)
  • [10] Quantum Carroll/fracton particles
    José Figueroa-O’Farrill
    Alfredo Pérez
    Stefan Prohazka
    Journal of High Energy Physics, 2023