An implicitly-restarted Krylov subspace method for real symmetric/skew-symmetric eigenproblems

被引:15
|
作者
Mehrmann, V. [1 ]
Schroeder, C. [1 ]
Simoncini, V. [2 ,3 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[2] Univ Bologna, Dipartimento Matemat, I-40127 Bologna, Italy
[3] CIRSA, Ravenna, Italy
关键词
Symmetric-and-skew-symmetric eigenvalue problem; Even eigenvalue problem; Neutral Arnoldi method; Implicitly restarted Arnoldi method; POLYNOMIAL EIGENVALUE PROBLEMS; MODEL-REDUCTION; STRICT EQUIVALENCE; NUMERICAL-SOLUTION; CANONICAL-FORMS; POSITIVE REAL; MATRIX PAIRS; CONVERGENCE;
D O I
10.1016/j.laa.2009.11.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new implicitly-restarted Krylov subspace method for real symmetric/skew-symmetric generalized eigenvalue problems is presented. The new method improves and generalizes the SHIRA method of Mehrmann and Watkins (2001) [37] to the case where the skew-symmetric matrix is singular. It computes a few eigen-values and eigenvectors of the matrix pencil close to a given target point. Several applications from control theory are presented and the properties of the new method are illustrated by benchmark examples. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:4070 / 4087
页数:18
相关论文
共 50 条
  • [1] On Krylov subspace methods for skew-symmetric and shifted skew-symmetric linear systems
    Du, Kui
    Fan, Jia-Jun
    Sun, Xiao-Hui
    Wang, Fang
    Zhang, Ya-Lan
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (04)
  • [2] NUMERICAL EQUIVALENCES AMONG KRYLOV SUBSPACE ALGORITHMS FOR SKEW-SYMMETRIC MATRICES
    Greif, C.
    Paige, C. C.
    Titley-Peloquin, D.
    Varah, J. M.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (03) : 1071 - 1087
  • [3] On Symmetric and Skew-Symmetric Operators
    Benhida, Chafiq
    Cho, Muneo
    Ko, Eungil
    Lee, Ji Eun
    FILOMAT, 2018, 32 (01) : 293 - 303
  • [4] Numerical investigation of Krylov subspace methods for solving non-symmetric systems of linear equations with dominant skew-symmetric part
    Krukier, Lev A.
    Pichugina, Olga A.
    Sokolov, Vadim
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2006, 3 (01) : 115 - 124
  • [5] Symmetric and skew-symmetric complex structures
    Bazzoni, Giovanni
    Gil-Garcia, Alejandro
    Latorre, Adela
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 170
  • [6] ON SYMMETRIC AND SKEW-SYMMETRIC DETERMINANTAL VARIETIES
    HARRIS, J
    TU, LW
    TOPOLOGY, 1984, 23 (01) : 71 - 84
  • [7] Implicitly restarted Krylov subspace methods for stable partial realizations
    Jaimoukha, IM
    Kasenally, EM
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1997, 18 (03) : 633 - 652
  • [8] From Symmetric to Skew-Symmetric Games
    Hao, Yaqi
    Cheng, Daizhan
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 1988 - 1991
  • [9] Shifted skew-symmetric/skew-symmetric splitting method and its application to generalized saddle point problems
    Salkuyeh, Davod Khojasteh
    APPLIED MATHEMATICS LETTERS, 2020, 103
  • [10] On skew-symmetric games
    Hao, Yaqi
    Cheng, Daizhan
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2018, 355 (06): : 3196 - 3220