Using elevation to aid the geostatistical mapping of rainfall erosivity

被引:169
|
作者
Goovaerts, P [1 ]
机构
[1] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA
关键词
rainfall-runoff erosivity factor; DEM; multivariate geostatistics; kriging;
D O I
10.1016/S0341-8162(98)00116-7
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper addresses the issue of incorporating a digital elevation model into the mapping of annual and monthly erosivity values in the Algarve region (Portugal). Besides linear regression of erosivity against elevation, three geostatistical algorithms are introduced: simple kriging with varying local means (SKLm), kriging with an external drift (KED) and colocated cokriging. Cross validation indicates that the straightforward linear regression, which ignores the information provided by neighboring climatic stations, yields the largest prediction errors in most situations. Smaller prediction errors are produced by SKlm and KED that both use elevation to inform on the local mean of erosivity; kriging with an external drift allows one to assess the relation between the two variables within each kriging search neighborhood instead of globally as for simple kriging with varying local means. The best results are generally obtained using cokriging that incorporates the secondary information directly into the computation of the erosivity estimate. The trade-off cost is the inference and modeling of three direct and cross semivariograms. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:227 / 242
页数:16
相关论文
共 50 条
  • [1] A digital elevation model to aid geostatistical mapping of weeds in sunflower crops
    M. Jurado-Expósito
    F. López-Granados
    J. M. Peña-Barragán
    L. García-Torres
    Agronomy for Sustainable Development, 2009, 29 : 391 - 400
  • [2] A digital elevation model to aid geostatistical mapping of weeds in sunflower crops
    Jurado-Exposito, M.
    Lopez-Granados, F.
    Pena-Barragan, J. M.
    Garcia-Torres, L.
    AGRONOMY FOR SUSTAINABLE DEVELOPMENT, 2009, 29 (02) : 391 - 400
  • [3] Mapping monthly rainfall erosivity in Europe
    Ballabio, Cristiano
    Borrelli, Pasquale
    Spinoni, Jonathan
    Meusburger, Katrin
    Michaelides, Silas
    Begueria, Santiago
    Klik, Andreas
    Petan, Saso
    Janecek, Miloslav
    Olsen, Preben
    Aalto, Juha
    Lakatos, Monika
    Rymszewicz, Anna
    Dumitrescu, Alexandru
    Tadic, Melita Percec
    Diodato, Nazzareno
    Kostalova, Julia
    Rousseva, Svetla
    Banasik, Kazimierz
    Alewell, Christine
    Panagos, Panos
    SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 579 : 1298 - 1315
  • [4] Incorporating elevation in rainfall interpolation in Tunisia using geostatistical methods
    Feki, Haifa
    Slimani, Mohamed
    Cudennec, Christophe
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2012, 57 (07): : 1294 - 1314
  • [5] Mapping rainfall erosivity over India using multiple precipitation datasets
    Raj, Ravi
    Saharia, Manabendra
    Chakma, Sumedha
    Rafieinasab, Arezoo
    CATENA, 2022, 214
  • [6] Mapping Monthly Rainfall Erosivity for the Lazio Region (Italy)
    Mineo, C.
    Ridolfi, E.
    Moccia, B.
    Napolitano, F.
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [7] Rainfall erosivity mapping for Santiago Island, Cape Verde
    Sanchez-Moreno, Juan Francisco
    Mannaerts, Chris M.
    Jetten, Victor
    GEODERMA, 2014, 217 : 74 - 82
  • [8] Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall
    Goovaerts, P
    JOURNAL OF HYDROLOGY, 2000, 228 (1-2) : 113 - 129
  • [9] RAINFALL MAPPING IN THE STATE OF ALAGOAS BY GEOSTATISTICAL TECHNIQUES
    Comisso, Hugo Silva
    de Medeiros, Elias Silva
    REVISTA UNIVAP, 2021, 27 (55)
  • [10] A step towards mapping rainfall erosivity for India using high-resolution GPM satellite rainfall products
    Das, Subhankar
    Jain, Manoj Kumar
    Gupta, Vivek
    CATENA, 2022, 212