Targeting the N332-supersite of the HIV-1 envelope for vaccine design

被引:10
|
作者
Moyo, Thandeka [1 ,2 ]
Kitchin, Dale [1 ,2 ]
Moore, Penny L. [1 ,2 ,3 ]
机构
[1] Natl Inst Communicable Dis, Natl Hlth Lab Serv, Ctr HIV & STIs 1, Johannesburg, South Africa
[2] Univ Witwatersrand, Fac Hlth Sci, Antibody Immun Res Unit, Johannesburg, South Africa
[3] Univ KwaZulu Natal, Ctr AIDS Programme Res South Africa CAPRISA, Durban, South Africa
基金
英国医学研究理事会; 新加坡国家研究基金会;
关键词
N332-supersite; HIV-1; immunogen design; broadly neutralizing antibodies; HIV vaccine; BROADLY NEUTRALIZING ANTIBODIES; HUMAN MONOCLONAL-ANTIBODIES; AFFINITY MATURATION; GLYCAN RECOGNITION; DEPENDENT EPITOPE; RATIONAL DESIGN; VIRUS ENVELOPE; MANNOSE PATCH; POTENT; SITE;
D O I
10.1080/14728222.2020.1752183
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Introduction: Broadly neutralizing antibodies (bNAbs) that are able to target diverse global viruses are widely believed to be crucial for an HIV-1 vaccine. Several conserved targets recognized by these antibodies have been identified on the HIV-1 envelope glycoprotein. One such target that shows particular promise for vaccination is the N332-supersite. Areas covered: This review describes the potential of the N332-supersite epitope as an immunogen design platform. We discuss the structure of the epitope and the bNAbs that target it, emphasizing their diverse modes of binding. Furthermore, the successes and limitations of recent N332-supersite immunization studies are discussed. Expert opinion: During HIV-1 infection, some of the broadest and most potent bNAbs target the N332-supersite. Furthermore, some of these antibodies require less affinity maturation than the high levels typical of many bNAbs, making these potentially more achievable vaccine targets. In addition, bNAbs bind this epitope with multiple angles of approach and glycan dependencies, perhaps increasing the probability of eliciting such responses by vaccination. Animal studies have shown that N332-supersite bNAb precursors can be activated by novel immunogens. While follow-up studies must establish whether boosting strategies can drive the maturation of bNAbs from these precursors, the development of targeted N332-supersite immunogens expands our arsenal of potential HIV-1 vaccine candidates.
引用
收藏
页码:499 / 509
页数:11
相关论文
共 50 条
  • [1] HIV-1 vaccine design through minimizing envelope metastability
    He, Linling
    Kumar, Sonu
    Allen, Joel D.
    Huang, Deli
    Lin, Xiaohe
    Mann, Colin J.
    Saye-Francisco, Karen L.
    Copps, Jeffrey
    Sarkar, Anita
    Blizard, Gabrielle S.
    Ozorowski, Gabriel
    Sok, Devin
    Crispin, Max
    Ward, Andrew B.
    Nemazee, David
    Burton, Dennis R.
    Wilson, Ian A.
    Zhu, Jiang
    SCIENCE ADVANCES, 2018, 4 (11):
  • [2] Stabilized diverse HIV-1 envelope trimers for vaccine design
    Wang, Qian
    Ma, Bingting
    Liang, Qingtai
    Zhu, Angqi
    Wang, Hua
    Fu, Lili
    Han, Xiaoxu
    Shi, Xuanling
    Xiang, Ye
    Shang, Hong
    Zhang, Linqi
    EMERGING MICROBES & INFECTIONS, 2020, 9 (01) : 775 - 786
  • [3] Antibodies Targeting the Envelope of HIV-1
    Mayr, Luzia M.
    Zolla-Pazner, Susan
    MICROBIOLOGY SPECTRUM, 2015, 3 (01):
  • [4] Temporal evolution of a unique N332 supersite directed bnAb lineage in slow progressing HIV-1 infection
    Schanz, M.
    Ebner, H.
    Abela, I. A.
    Rusert, P.
    Weber, J.
    Zagordi, O.
    Zaheri, M.
    Braun, D. L.
    Guenthard, H. F.
    Huber, M.
    Trkola, A.
    HIV MEDICINE, 2019, 20 : 16 - 16
  • [5] Conformation of the native HIV-1 envelope protein raises questions for vaccine design
    Alexandra Trkola
    Nature, 2019, 568 (7752) : 321 - 322
  • [6] HIV envelope trimer-elicited autologous neutralizing antibodies bind a region overlapping the N332 glycan supersite
    Nogal, Bartek
    McCoy, Laura E.
    van Gils, Marit J.
    Cottrell, Christopher A.
    Voss, James E.
    Andrabi, Raiees
    Pauthner, Matthias
    Liang, Chi-Hui
    Messmer, Terrence
    Nedellec, Rebecca
    Shin, Mia
    Turner, Hannah L.
    Ozorowski, Gabriel
    Sanders, Rogier W.
    Burton, Dennis R.
    Ward, Andrew B.
    SCIENCE ADVANCES, 2020, 6 (23):
  • [7] GLYCOSYLATION OF HIV-1 ENVELOPE PROTEIN - VACCINE CONSIDERATION
    LEE, TH
    JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES AND HUMAN RETROVIROLOGY, 1993, 6 (06): : 679 - 679
  • [8] Envelope Glycoprotein Trimers as HIV-1 Vaccine Immunogens
    Sattentau, Quentin J.
    VACCINES, 2013, 1 (04):
  • [9] Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120
    Leopold Kong
    Jeong Hyun Lee
    Katie J Doores
    Charles D Murin
    Jean-Philippe Julien
    Ryan McBride
    Yan Liu
    Andre Marozsan
    Albert Cupo
    Per-Johan Klasse
    Simon Hoffenberg
    Michael Caulfield
    C Richter King
    Yuanzi Hua
    Khoa M Le
    Reza Khayat
    Marc C Deller
    Thomas Clayton
    Henry Tien
    Ten Feizi
    Rogier W Sanders
    James C Paulson
    John P Moore
    Robyn L Stanfield
    Dennis R Burton
    Andrew B Ward
    Ian A Wilson
    Nature Structural & Molecular Biology, 2013, 20 : 796 - 803
  • [10] Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120
    Kong, Leopold
    Lee, Jeong Hyun
    Doores, Katie J.
    Murin, Charles D.
    Julien, Jean-Philippe
    McBride, Ryan
    Liu, Yan
    Marozsan, Andre
    Cupo, Albert
    Klasse, Per-Johan
    Hoffenberg, Simon
    Caulfield, Michael
    King, C. Richter
    Hua, Yuanzi
    Le, Khoa M.
    Khayat, Reza
    Deller, Marc C.
    Clayton, Thomas
    Tien, Henry
    Feizi, Ten
    Sanders, Rogier W.
    Paulson, James C.
    Moore, John P.
    Stanfield, Robyn L.
    Burton, Dennis R.
    Ward, Andrew B.
    Wilson, Ian A.
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2013, 20 (07) : 796 - +