Nanopteron solutions of diatomic Fermi-Pasta-Ulam-Tsingou lattices with small mass-ratio

被引:33
|
作者
Hoffman, Aaron [2 ]
Wright, J. Douglas [1 ]
机构
[1] Drexel Univ, Philadelphia, PA 19104 USA
[2] Olin Coll Engn, Needham, MA USA
基金
美国国家科学基金会;
关键词
FPU; Nanopterons; Traveling waves; Solitons; Singular perturbations; SOLITARY WAVES; FPU LATTICES; WATER-WAVES; EXISTENCE;
D O I
10.1016/j.physd.2017.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider an infinite chain of masses, each connected to its nearest neighbors by a (nonlinear) spring. This is a Fermi-Pasta-Ulam-Tsingou lattice. We prove the existence of traveling waves in the setting where the masses alternate in size. In particular we address the limit where the mass ratio tends to zero. The problem is inherently singular and we find that the traveling waves are not true solitary waves but rather "nanopterons", which is to say, waves which are asymptotic at spatial infinity to very small amplitude periodic waves. Moreover, we can only find solutions when the mass ratio lies in a certain open set. The difficulties in the problem all revolve around understanding Jost solutions of a nonlocal Schrodinger operator in its semi-classical limit. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:33 / 59
页数:27
相关论文
共 50 条
  • [1] NANOPTERON-STEGOTON TRAVELING WAVES IN SPRING DIMER FERMI-PASTA-ULAM-TSINGOU LATTICES
    Faver, Timothy E.
    QUARTERLY OF APPLIED MATHEMATICS, 2020, 78 (03) : 363 - 429
  • [2] Micropteron traveling waves in diatomic Fermi-Pasta-Ulam-Tsingou lattices under the equal mass limit
    Faver, Timothy E.
    Hupkes, Hermen Jan
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 410
  • [3] q-Breathers in the diatomic β-Fermi-Pasta-Ulam-Tsingou chains
    Deng, Lin
    Yu, Hang
    Zhu, Zhigang
    Fu, Weicheng
    Wang, Yisen
    Huang, Liang
    NEW JOURNAL OF PHYSICS, 2025, 27 (03):
  • [4] Dispersive fractalisation in linear and nonlinear Fermi-Pasta-Ulam-Tsingou lattices
    Olver, Peter J.
    Stern, Ari
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2021, 32 (05) : 820 - 845
  • [5] The β Fermi-Pasta-Ulam-Tsingou recurrence problem
    Pace, Salvatore D.
    Reiss, Kevin A.
    Campbell, David K.
    CHAOS, 2019, 29 (11)
  • [6] Existence of generalized solitary waves for a diatomic Fermi-Pasta-Ulam-Tsingou lattice
    Deng, Shengfu
    Sun, Shu-Ming
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 423 : 161 - 196
  • [7] Periodic orbits in Fermi-Pasta-Ulam-Tsingou systems
    Karve, Nachiket
    Rose, Nathan
    Campbell, David
    CHAOS, 2024, 34 (09)
  • [8] Vortex revivals and Fermi-Pasta-Ulam-Tsingou recurrence
    Paredes, Angel
    Blanco-Labrador, Jose
    Olivieri, David N.
    Salgueiro, Jose R.
    Michinel, Humberto
    PHYSICAL REVIEW E, 2019, 99 (06)
  • [9] Burgers Turbulence in the Fermi-Pasta-Ulam-Tsingou Chain
    Gallone, Matteo
    Marian, Matteo
    Ponno, Antonio
    Ruffo, Stefano
    PHYSICAL REVIEW LETTERS, 2022, 129 (11)
  • [10] The Metastable State of Fermi-Pasta-Ulam-Tsingou Models
    Reiss, Kevin A. A.
    Campbell, David K. K.
    ENTROPY, 2023, 25 (02)