共 50 条
Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology
被引:258
|作者:
Zhang, Baogang
[1
]
Feng, Chuanping
[1
]
Ni, Jinren
[2
]
Zhang, Jing
[1
]
Huang, Wenli
[1
]
机构:
[1] China Univ Geosci, Sch Water Resources & Environm, Beijing Key Lab Water Resources & Environm Engn, Beijing 100083, Peoples R China
[2] Peking Univ, Dept Environm Engn, Beijing 100871, Peoples R China
关键词:
Microbial fuel cells;
Vanadium (V);
Chromium (VI);
Wastewater treatment;
Electricity generation;
AIR-CATHODE;
WASTE-WATER;
GENERATION;
D O I:
10.1016/j.jpowsour.2012.01.013
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Vanadium (V) and chromium (VI) are the main metals found in vanadium containing wastewater with large amount and great toxicity. In present study, reduction of V(V) and Cr(VI) together with electricity generation is successfully achieved in double chamber microbial fuel cells (MFCs) by employing vanadium containing wastewater as the cathodic electron acceptor. The V(v) and Cr(VI) reduction efficiencies for 240 h operation approach up to 67.9 +/- 3.1% and 75.4 +/- 1.9%, respectively, with a maximum power density of 970.2 +/- 20.6 mW m(-2). The power output is enhanced, compared with the results from MFCs with V(V) as the sole electron acceptor, while the decrease of the cathode efficiency caused by deposits from Cr(vi) reduction process can also be mitigated. After reduction, chromium is mainly deposited on the cathode surface in the form of Cr(III), while most of vanadium can be precipitated from the exhausted catholyte by adjusting pH, thus treating vanadium containing wastewater successfully with energy harvest based on MFC technology. The operating principles of MFCs with two different electron acceptors are also reported for the first time. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:34 / 39
页数:6
相关论文