Si diffusion path for pit-free graphene growth on SiC(0001)

被引:36
|
作者
Sun, G. F. [1 ,2 ,5 ]
Liu, Y. [1 ,2 ]
Rhim, S. H. [1 ,2 ]
Jia, J. F. [3 ,4 ]
Xue, Q. K. [3 ,5 ]
Weinert, M. [1 ,2 ]
Li, L. [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Phys, Milwaukee, WI 53211 USA
[2] Univ Wisconsin, Surface Studies Lab, Milwaukee, WI 53211 USA
[3] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[4] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200240, Peoples R China
[5] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
关键词
SELF-DIFFUSION; EPITAXIAL GRAPHENE; SINGLE-CRYSTALS; RECONSTRUCTION; SI-30;
D O I
10.1103/PhysRevB.84.195455
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Density functional theory calculations reveal that the interfacial 6 root 3 x 6 root 3 structure [awarped graphene layer with periodic inclusions of pentagon-hexagon-heptagon (H-5,H-6,H-7) defects] facilitates a Si diffusion path vertically through the interface layer during epitaxial growth of graphene on SiC(0001). The calculated diffusion barrier is 4.7 eV, competitive with Si interstitial diffusion of similar to 3.5 eV in SiC [M. Bockstedte et al., Phys. Rev. B 68, 205201 (2003)]. Scanning tunneling microscopy study shows that, for growth in an Ar background, where Si desorption is suppressed and all diffusion channels contribute, graphene films with reduced pit density can be grown on nominally flat SiC substrates. On the other hand, for Si diffusion-limited growth in ultrahigh vacuum, the Si interstitial diffusion is the energetically favorable path where the step edges serve as the necessary outlet toward Si desorption. The much higher density of step edges on vicinal substrates also facilitates the growth of pit-free graphene.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Improved graphene growth in UHV: Pit-free surfaces by selective Si etching of SiC(0001)-Si with atomic hydrogen
    Sandin, Andreas
    Rowe, J. E.
    Dougherty, Daniel B.
    SURFACE SCIENCE, 2013, 611 : 25 - 31
  • [2] Aggregation of carbon atoms at SiO2/SiC(0001) interface by plasma oxidation toward formation of pit-free graphene
    Saito, Naoki
    Mori, Daichi
    Imafuku, Akito
    Nishitani, Keisuke
    Sakane, Hiroki
    Kawai, Kentaro
    Sano, Yasuhisa
    Morita, Mizuho
    Arima, Kenta
    CARBON, 2014, 80 : 440 - 445
  • [3] Growth of pit-free GaP on Si by suppression of a surface reaction at an initial growth stage
    Yamane, Keisuke
    Kobayashi, Tomohito
    Furukawa, Yuzo
    Okada, Hiroshi
    Yonezu, Hiroo
    Wakahara, Akihiro
    JOURNAL OF CRYSTAL GROWTH, 2009, 311 (03) : 794 - 797
  • [4] Direct growth of etch pit-free GaN crystals on few-layer graphene
    Chae, Seung Jin
    Kim, Yong Hwan
    Seo, Tae Hoon
    Duong, Dinh Loc
    Lee, Seung Mi
    Park, Min Ho
    Kim, Eun Sung
    Bae, Jung Jun
    Lee, Si Young
    Jeong, Hyun
    Suh, Eun-Kyung
    Yang, Cheol Woong
    Jeong, Mun Seok
    Lee, Young Hee
    RSC ADVANCES, 2015, 5 (02) : 1343 - 1349
  • [5] Si growth at graphene surfaces on 6H-SiC(0001) substrates
    Sone, Junki
    Yamagami, Tsuyoshi
    Nakatsuji, Kan
    Hirayama, Hiroyuki
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (03)
  • [6] Thermodynamics and Kinetics of Graphene Growth on SiC(0001)
    Tromp, R. M.
    Hannon, J. B.
    PHYSICAL REVIEW LETTERS, 2009, 102 (10)
  • [7] Preparation of pit-free hydrogen-terminated Si(111) in deoxygenated ammonium fluoride
    Wade, CP
    Chidsey, CED
    SCIENCE AND TECHNOLOGY OF SEMICONDUCTOR SURFACE PREPARATION, 1997, 477 : 299 - 304
  • [8] Theoretical Study on Epitaxial Graphene Growth by Si Sublimation from SiC(0001) Surface
    Kageshima, Hiroyuki
    Hibino, Hiroki
    Yamaguchi, Hiroshi
    Nagase, Masao
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2011, 50 (09)
  • [9] Pit formation during graphene synthesis on SiC(0001):: In situ electron microscopy
    Hannon, J. B.
    Tromp, R. M.
    PHYSICAL REVIEW B, 2008, 77 (24):
  • [10] Epitaxial Graphene Growth on 3C-SiC(111)/AlN(0001)/Si(100)
    Hsia, Benjamin
    Ferralis, Nicola
    Senesky, Debbie G.
    Pisano, Albert P.
    Carraro, Carlo
    Maboudian, Roya
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2011, 14 (02) : K13 - K15