Hamilton connectivity of line graphs and claw-free graphs

被引:14
|
作者
Hu, ZQ [1 ]
Tian, F
Wei, B
机构
[1] Cent China Normal Univ, Fac Math & Stat, Hubei 430079, Peoples R China
[2] Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[3] Univ Mississippi, Dept Math, University, MS 38677 USA
关键词
Hamilton-connected; hamiltonian cycle; line graph; claw-free graph; spanning trail;
D O I
10.1002/jgt.20099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph and let V-0 = {v epsilon V(G): d(G)(v)= 6}. We show in this paper that: (1) if G is a 6-connected line graph and if vertical bar V-0 vertical bar <= 29 or G[V-0] contains at most 5 vertex disjoint K-4's, then G is Hamilton-connected; (ii) every 8-connected claw-free graph is Hamilton-connected. Several related results known before are generalized. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:130 / 141
页数:12
相关论文
共 50 条
  • [1] Line Graphs of Multigraphs and Hamilton-Connectedness of Claw-Free Graphs
    Ryjacek, Zdenek
    Vrana, Petr
    JOURNAL OF GRAPH THEORY, 2011, 66 (02) : 152 - 173
  • [2] -Connectivity of Claw-Free Graphs
    Huang, Ziwen
    Li, Xiangwen
    Ma, Jianqing
    GRAPHS AND COMBINATORICS, 2017, 33 (01) : 123 - 140
  • [3] HAMILTON CYCLES IN CLAW-FREE GRAPHS
    ZHANG, CQ
    JOURNAL OF GRAPH THEORY, 1988, 12 (02) : 209 - 216
  • [4] Connectivity of Claw-free Maximal Nontraceable Graphs
    Dunbar, Jean E.
    Frick, Marietjie
    Harris, John M.
    van Aardt, Susan
    UTILITAS MATHEMATICA, 2011, 84 : 245 - 255
  • [5] On s-hamiltonian line graphs of claw-free graphs
    Lai, Hong-Jian
    Zhan, Mingquan
    Zhang, Taoye
    Zhou, Ju
    DISCRETE MATHEMATICS, 2019, 342 (11) : 3006 - 3016
  • [6] On 1-Hamilton-connected claw-free graphs
    Kaiser, Tomas
    Ryjacek, Zdenek
    Vrana, Petr
    DISCRETE MATHEMATICS, 2014, 321 : 1 - 11
  • [7] The *-closure for graphs and claw-free graphs
    Cada, Roman
    DISCRETE MATHEMATICS, 2008, 308 (23) : 5585 - 5596
  • [8] Counting labeled claw-free cubic graphs by connectivity
    Chae, Gab-Byung
    DISCRETE MATHEMATICS, 2008, 308 (22) : 5136 - 5143
  • [9] Local connectivity and cycle extension in claw-free graphs
    Faudree, RJ
    Ryjacek, Z
    Schiermeyer, I
    ARS COMBINATORIA, 1997, 47 : 185 - 190
  • [10] Closure and Hamiltonian-connectivity of claw-free graphs
    Bollobás, B
    Riordan, O
    Ryjácek, Z
    Saito, A
    Schelp, RH
    DISCRETE MATHEMATICS, 1999, 195 (1-3) : 67 - 80