Influences of Exciton Diffusion and Exciton-Exciton Annihilation on Photon Emission Statistics of Carbon Nanotubes

被引:33
|
作者
Ma, Xuedan [1 ]
Roslyak, Oleskiy [1 ,5 ]
Duque, Juan G. [2 ]
Pang, Xiaoying [3 ]
Doorn, Stephen K. [1 ]
Piryatinski, Andrei [4 ]
Dunlap, David H. [6 ]
Htoon, Han [1 ]
机构
[1] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Div Chem, Phys Chem & Appl Spect, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, Accelerator Operat & Technol Div, High Power Electrodynam, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[5] Fordham Univ, Dept Phys & Engn Phys, Bronx, NY 10458 USA
[6] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA
关键词
ELECTRONIC-STRUCTURE; FLUORESCENCE;
D O I
10.1103/PhysRevLett.115.017401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Pump-dependent photoluminescence imaging and second-order photon correlation studies have been performed on individual single-walled carbon nanotubes (SWCNTs) at room temperature. These studies enable the extraction of both the exciton diffusion constant and the Auger recombination coefficient. A linear correlation between these parameters is attributed to the effect of environmental disorder in setting the exciton mean free path and capture-limited Auger recombination at this length scale. A suppression of photon antibunching is attributed to the creation of multiple spatially nonoverlapping excitons in SWCNTs, whose diffusion length is shorter than the laser spot size. We conclude that complete antibunching at room temperature requires an enhancement of the exciton-exciton annihilation rate that may become realizable in SWCNTs allowing for strong exciton localization.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Exciton diffusion, end quenching, and exciton-exciton annihilation in individual air-suspended carbon nanotubes
    Ishii, A.
    Yoshida, M.
    Kato, Y. K.
    PHYSICAL REVIEW B, 2015, 91 (12):
  • [2] Exciton-exciton annihilation in single-walled carbon nanotubes
    Valkunas, L
    Ma, YZ
    Fleming, GR
    PHYSICAL REVIEW B, 2006, 73 (11)
  • [3] Exciton-exciton annihilation and relaxation pathways in semiconducting carbon nanotubes
    Chmeliov, Jevgenij
    Narkeliunas, Jonas
    Graham, Matt W.
    Fleming, Graham R.
    Valkunas, Leonas
    NANOSCALE, 2016, 8 (03) : 1618 - 1626
  • [4] Exciton-Exciton Annihilation as a Probe of Exciton Diffusion in Large Porphyrin Nanorings
    Bressan, Giovanni
    Jirasek, Michael
    Anderson, Harry L.
    Heisler, Ismael A.
    Meech, Stephen R.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (34): : 18416 - 18425
  • [5] Exciton-exciton annihilation in hBN
    Plaud, A.
    Schue, L.
    Watanabe, K.
    Taniguchi, T.
    Fossard, F.
    Ducastelle, F.
    Loiseau, A.
    Barjon, J.
    APPLIED PHYSICS LETTERS, 2019, 114 (23)
  • [6] Exciton-exciton annihilation and biexciton stimulated emission in graphene nanoribbons
    Soavi, Giancarlo
    Dal Conte, Stefano
    Manzoni, Cristian
    Viola, Daniele
    Narita, Akimitsu
    Hu, Yunbin
    Feng, Xinliang
    Hohenester, Ulrich
    Molinari, Elisa
    Prezzi, Deborah
    Muellen, Klaus
    Cerullo, Giulio
    NATURE COMMUNICATIONS, 2016, 7
  • [7] Kinetic theory of exciton-exciton annihilation
    May, Volkhard
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (05):
  • [8] Exciton-exciton annihilation in molecular aggregations
    Mao Jiang-Qi
    Fan Xu-Yang
    Lu Yan-Zhen
    Wang Lu-Xia
    ACTA PHYSICA SINICA, 2021, 70 (04)
  • [9] EXCITON-EXCITON ANNIHILATION IN PYRENE CRYSTALS
    VOL, ED
    GOLOYADOV, VA
    KUKUSHKIN, LS
    NABOYKIN, YV
    SILAEVA, NB
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 1971, 47 (02): : 685 - +
  • [10] DIRECT RADIATIVE EXCITON-EXCITON ANNIHILATION
    KNOX, RS
    SWENBERG, CE
    JOURNAL OF CHEMICAL PHYSICS, 1966, 44 (07): : 2577 - +