Stabilizing insulin-like growth factor-I in poly(D,L-lactide-co-glycolide) microspheres

被引:130
|
作者
Meinel, L
Illi, OE
Zapf, J
Malfanti, M
Merkle, HP
Gander, B
机构
[1] Swiss Fed Inst Technol, Galencial Pharm, Dept Appl Biosci, CH-8057 Zurich, Switzerland
[2] Univ Zurich, Childrens Hosp, Dept Surg, CH-8032 Zurich, Switzerland
[3] Univ Zurich Hosp, CH-8091 Zurich, Switzerland
关键词
biodegradable microspheres; insulin-like growth factor-I; poly(lactide-co-glycolide); protein stability;
D O I
10.1016/S0168-3659(00)00352-7
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study aimed at developing a controlled drug delivery system for recombinant human insulin-like growth factor-I (IGF-I) for localized delivery in bone healing. IGF-I was microencapsulated into an end-group uncapped 14 kDa poly( D.L-lactide-co-glycolide) 50:50 (PLGA 50:50) by solvent extraction from a W-1/O/W-2 dispersion. Prior to encapsulation, IGF-I was exposed to ultrasonication in a water/dichloromethane dispersion, and its stability tested in the presence acid absence of various excipients in the W-1 phase. HPLC and RIA were used for the assessment of IGF-I stability. Microencapsulated IGF-I was tested again for its structural intactness and also for in vitro release from various formulations containing appropriate co-encapsulated excipients. A specific fat cell assay was used to determine the biological activity of released IGF-I. Moderate ultrasonic treatment of aqueous IGF-I/dichloromethane mixtures caused approx. 50% IGF-I degradation. However, IGF-I was fully protected when bovine serum albumin, succinylated gelatin or poly(ethyleneglycol) were added to the aqueous IGF-I. Co-encapsulation of these excipients protected efficiently the protein upon microencapsulation. IGF-I release from microsphere formulations was sustained for up to 13 days featuring a moderately pulsatile pattern, depending on the microsphere composition. Typically, the amounts of IGF-I released within the first 14 b (burst) and during the second release pulse were in the order of 20 and 40%, respectively, of the total dose. The biological activity of released IGF-I was confirmed at selected time-points by the fat cell assay. In conclusion. the developed microspheres proved to be suitable to release biologically intact IGF-I over up to 13 days, a time-period considered to be relevant to promote bone fracture healing. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:193 / 202
页数:10
相关论文
共 50 条
  • [1] CHARACTERIZATION OF BIODEGRADABLE POLY(D,L-LACTIDE-CO-GLYCOLIDE) POLYMERS AND MICROSPHERES
    HAUSBERGER, AG
    DELUCA, PP
    JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 1995, 13 (06) : 747 - 760
  • [2] Clonazepam microencapsulation in poly-D,L-lactide-co-glycolide microspheres
    Benelli, P
    Conti, B
    Genta, I
    Costantini, M
    Montanari, L
    JOURNAL OF MICROENCAPSULATION, 1998, 15 (04) : 431 - 443
  • [3] A comparison of the increased temperature accelerated degradation of Poly (D,L-lactide-co-glycolide) and Poly(L-lactide-co-glycolide)
    Geddes, L.
    Carson, L.
    Themistou, E.
    Buchanan, F.
    POLYMER TESTING, 2020, 91
  • [4] New insights into the pore structure of poly(D,L-lactide-co-glycolide) microspheres
    Vay, Kerstin
    Scheler, Stefan
    Friess, Wolfgang
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2010, 402 (1-2) : 20 - 26
  • [5] Accelerated Polymer Biodegradation of Risperidone Poly(D, L-Lactide-Co-Glycolide) Microspheres
    Selmin, Francesca
    Blasi, Paolo
    DeLuca, Patrick P.
    AAPS PHARMSCITECH, 2012, 13 (04): : 1465 - 1472
  • [6] Incorporation and release of vancomycin from poly(D,L-lactide-co-glycolide) microspheres
    Atkins, TW
    Peacock, SJ
    Yates, DJ
    JOURNAL OF MICROENCAPSULATION, 1998, 15 (01) : 31 - 44
  • [7] Accelerated Polymer Biodegradation of Risperidone Poly(d, l-Lactide-Co-Glycolide) Microspheres
    Francesca Selmin
    Paolo Blasi
    Patrick P. DeLuca
    AAPS PharmSciTech, 2012, 13 : 1465 - 1472
  • [8] Fabrication of Poly(D,L-lactide-co-glycolide) Microspheres and Degradation Characteristics in vitro
    He, Zeqiang
    Xiong, Lizhi
    JOURNAL OF MACROMOLECULAR SCIENCE PART B-PHYSICS, 2011, 50 (09): : 1682 - 1690
  • [9] STABILITY OF ATRIOPEPTIN-III IN POLY(D,L-LACTIDE-CO-GLYCOLIDE) MICROSPHERES
    JOHNSON, RE
    LANASKI, LA
    GUPTA, V
    GRIFFIN, MJ
    GAUD, HT
    NEEDHAM, TE
    ZIA, H
    JOURNAL OF CONTROLLED RELEASE, 1991, 17 (01) : 61 - 67
  • [10] Preparation and characterization of poly(D,L-lactide-co-glycolide) microspheres for controlled release of human growth hormone
    Yilmaz Capan
    Ge Jiang
    Stefano Giovagnoli
    Kyu-Heum Na
    Patrick P. DeLuca
    AAPS PharmSciTech, 4 (2)