Adjoint Pairs on Interval-Valued Fuzzy Sets

被引:0
|
作者
Medina, Jesus [1 ]
机构
[1] Univ Cadiz, Dept Math, Cadiz, Spain
关键词
INTUITIONISTIC FUZZY; T-NORMS; ORDINAL SUMS; REPRESENTATION; PROGRAMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper the authors present the definition of interval operator associated to two general increasing operators, on the set of subintervals of [0,1], and how its residuated implication must be defined, if the initial operator have adjoint implications. These results are necessary in several frameworks where mechanisms for reasoning under uncertainty are needed, such as decision and risk analysis, engineering design, and scheduling. We will show three framework where the interval values are used and, hence, where the results presented here can be useful.
引用
收藏
页码:430 / 439
页数:10
相关论文
共 50 条
  • [1] A Note on Interval-valued Fuzzy Rough Sets and Interval-valued Intuitionistic Fuzzy Sets
    Zhang, Q. S.
    Jiang, S. Y.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2010, 34 (03) : 553 - 561
  • [2] On Interval-Valued Fuzzy on Ideal Sets
    Togonon, Mary Joy S.
    Caga-anan, Randy L.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 12 (02): : 553 - 570
  • [3] Specificity for interval-valued fuzzy sets
    Ramón González-del-Campo
    Luis Garmendia
    Ronald R. Yager
    International Journal of Computational Intelligence Systems, 2012, 5 : 452 - 459
  • [4] On the cardinalities of interval-valued fuzzy sets
    Deschrijver, Glad
    Kral, Pavol
    FUZZY SETS AND SYSTEMS, 2007, 158 (15) : 1728 - 1750
  • [5] Specificity for interval-valued fuzzy sets
    Gonzalez-del-Campo, Ramon
    Garmendia, L.
    Yager, Ronald R.
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [6] Clustering with Interval-valued Fuzzy Sets
    Gonzalez del Campo, Ramon
    Luis Gonzalez, Jose
    PROCEEDINGS OF THE 2015 CONFERENCE OF THE INTERNATIONAL FUZZY SYSTEMS ASSOCIATION AND THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY, 2015, 89 : 351 - 356
  • [7] Specificity for interval-valued fuzzy sets
    Gonzalez-del-Campo, Ramon
    Garmendia, Luis
    Yager, Ronald R.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2012, 5 (03): : 452 - 459
  • [8] Topology of interval-valued fuzzy sets
    Mondal, TK
    Samanta, SK
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1999, 30 (01): : 23 - 38
  • [9] Uninorms on Interval-Valued Fuzzy Sets
    Kalina, Martin
    Kral, Pavol
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS, IPMU 2016, PT II, 2016, 611 : 522 - 531
  • [10] Entropy for Interval-Valued Fuzzy Sets
    Ju, Hong-mei
    FUZZY INFORMATION AND ENGINEERING, VOL 1, 2009, 54 : 358 - 365