The maximum rank of 2 x MIDLINE HORIZONTAL ELLIPSIS x 2 tensors over F&xdd3d;2

被引:0
|
作者
Stavrou, Stavros Georgios [1 ]
Low, Richard M. [2 ]
机构
[1] Univ Saskatchewan, Dept Math & Stat, Saskatoon, SK, Canada
[2] San Jose State Univ, Dept Math & Stat, San Jose, CA 95192 USA
来源
LINEAR & MULTILINEAR ALGEBRA | 2021年 / 69卷 / 03期
关键词
Multidimensional arrays; tensor rank; finite fields; computer algebra; CLASSIFICATION; ARRAYS;
D O I
10.1080/03081087.2020.1758019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine that the maximum rank of an order-n (>= 2) tensor with form at 2 x .... x 2 over the finite field F-2 is 2 . 3(n/2-1) for even n, and 3([n/2]) for odd n. Since tensor rank is non-increasing upon taking field extensions, F-2 gives the largest rank attainable for this tensor format. We also determine a maximum rank canonical form and compute its orbit under the action of the symmetry group GL(2)(F-2)(xn), and prove that this is the unique maximum rank canonical form, for even n >= 2.
引用
收藏
页码:394 / 402
页数:9
相关论文
共 50 条
  • [1] Rank classification of 2 x 2 x 2 x 2 x 2 tensors over F2
    Stavrou, Stavros G.
    Low, Richard M.
    Hernandez, Nicholas J.
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (11): : 2297 - 2312
  • [2] Corrigendum to 'Rank classification of 2 x 2 x 2 x 2 x 2 tensors over F2'
    Stavrou, Stavros G.
    Low, Richard M.
    Hernandez, Nicholas J.
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (03): : 514 - 515
  • [3] The Symmetric Rank of 2 x 2 x ⋯ x 2 Symmetric Tensors over an Arbitrary Field
    Song, Xiaoyu
    Zheng, Baodong
    Huang, Riguang
    Xu, Jinli
    FRONTIERS OF MATHEMATICS, 2024, 19 (06): : 1041 - 1065
  • [4] MAXIMAL RANK OF m x n x 2 TENSORS OVER ARBITRARY FIELDS
    Song, Xiaoyu
    Zheng, Baodong
    Huang, Riguang
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2022, 43 (02) : 867 - 881
  • [5] The construction D + DX+DX2+MIDLINE HORIZONTAL ELLIPSIS + DXk + Xk+1K[X]
    Hu, Kui
    Wang, Ling
    Zhou, De Chuan
    Xie, Jin
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023,
  • [6] Canonical forms of 2 x 2 x 2 and 2 x 2 x 2 x 2 arrays over F2 and F3
    Bremner, Murray R.
    Stavrou, Stavros G.
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (07): : 986 - 997
  • [7] Canonical forms of 2 x 2 x 2 and 2 x 2 x 2 x 2 symmetric tensors over prime fields
    Stavrou, Stavros G.
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (09): : 1169 - 1186
  • [8] Exact probabilities for typical ranks of 2 x 2 x 2 and 3 x 3 x 2 tensors
    Bergqvist, Goran
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (02) : 663 - 667
  • [9] A note on the ranks of 2 x 2 x 2 and 2 x 2 x 2 x 2 tensors
    Kong, Xu
    Jiang, Yao-Lin
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (10): : 1348 - 1362
  • [10] RANK PROBABILITIES FOR REAL RANDOM N x N x 2 TENSORS
    Bergqvist, Goran
    Forrester, Peter J.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 630 - 637