Non-commutative generalized Latin squares of order 5 and their embeddings in finite groups

被引:0
|
作者
Chen, H. V. [1 ]
Chin, A. Y. M. [2 ]
Sharmini, S. [1 ]
机构
[1] Univ Tunku Abdul Rahman, Fac Sci & Engn, Dept Math & Actuarial Sci, Kuala Lumpur 53300, Malaysia
[2] Univ Malaya, Fac Sci, Inst Math Sci, Kuala Lumpur 50603, Malaysia
关键词
generalized Latin square; embeddable in groups;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n be a positive integer. A generalized Latin square of order n is an n x n matrix such that the elements in each row and each column are distinct. In this paper, we investigate classes of non-commutative generalized Latin squares of order 5 with 5, 24, and 25 distinct elements. We shall divide the squares into equivalence classes and determine completely the squares which are embeddable in groups. We also show that given any integer m where 5 <= m <= 25, there exists a non-commutative generalized Latin square of order 5 with m distinct elements which is embeddable in a finite group.
引用
收藏
页码:65 / 78
页数:14
相关论文
共 50 条
  • [1] Non-Commutative Generalized Latin Squares of Order 5 with Certain Number of Distinct Elements
    Chen, H. V.
    Chin, A. Y. M.
    Sharmini, S.
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES, 2014, 1602 : 723 - 729
  • [2] Embeddings of generalized Latin squares in finite groups
    Chen, H. V.
    Chin, A. Y. M.
    PERIODICA MATHEMATICA HUNGARICA, 2015, 71 (02) : 179 - 183
  • [3] Embeddings of generalized Latin squares in finite groups
    H. V. Chen
    A. Y. M. Chin
    Periodica Mathematica Hungarica, 2015, 71 : 179 - 183
  • [4] Constructions of Commutative Generalized Latin Squares of Order 5
    Chen, H. V.
    Chin, A. Y. M.
    Sharmini, S.
    PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B, 2013, 1522 : 986 - 995
  • [5] Non-commutative geometry of finite groups
    Bresser, K
    MullerHoissen, F
    Dimakis, A
    Sitarz, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (11): : 2705 - 2735
  • [6] Embeddings of lp into non-commutative spaces
    Randrianantoanina, N
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 74 : 331 - 350
  • [7] Generalized Non-Commutative Dynamics
    Chung, Won Sang
    Jang, Eun Ji
    JOURNAL OF ADVANCED PHYSICS, 2016, 5 (01) : 36 - 43
  • [8] Words and Polynomial Invariants of Finite Groups in Non-Commutative Variables
    Anouk Bergeron-Brlek
    Christophe Hohlweg
    Mike Zabrocki
    Annals of Combinatorics, 2012, 16 : 1 - 36
  • [9] Generalized non-commutative tori
    Park, CG
    STUDIA MATHEMATICA, 2002, 149 (02) : 101 - 108
  • [10] Generalized non-commutative inflation
    Machado, U. D.
    Opher, R.
    CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (06)