Classification using distance nearest neighbours

被引:11
|
作者
Friel, N. [1 ]
Pettitt, A. N. [2 ]
机构
[1] Univ Coll Dublin, Sch Math Sci, Dublin 2, Ireland
[2] Queensland Univ Technol, Discipline Math Sci, Brisbane, Qld 4001, Australia
基金
澳大利亚研究理事会; 爱尔兰科学基金会;
关键词
Classification; Markov chain Monte Carlo; k-nearest neighbours; MONTE-CARLO;
D O I
10.1007/s11222-010-9179-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper proposes a new probabilistic classification algorithm using a Markov random field approach. The joint distribution of class labels is explicitly modelled using the distances between feature vectors. Intuitively, a class label should depend more on class labels which are closer in the feature space, than those which are further away. Our approach builds on previous work by Holmes and Adams (J. R. Stat. Soc. Ser. B 64:295-306, 2002; Biometrika 90:99-112, 2003) and Cucala et al. (J. Am. Stat. Assoc. 104:263-273, 2009). Our work shares many of the advantages of these approaches in providing a probabilistic basis for the statistical inference. In comparison to previous work, we present a more efficient computational algorithm to overcome the intractability of the Markov random field model. The results of our algorithm are encouraging in comparison to the k-nearest neighbour algorithm.
引用
收藏
页码:431 / 437
页数:7
相关论文
共 50 条
  • [1] Classification using distance nearest neighbours
    N. Friel
    A. N. Pettitt
    Statistics and Computing, 2011, 21 : 431 - 437
  • [2] Learning Set Cardinality in Distance Nearest Neighbours
    Anagnostopoulos, Christos
    Triantafillou, Peter
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2015, : 691 - 696
  • [3] Comparison of Music Genre Classification Using Nearest Centroid Classifier and k-Nearest Neighbours
    Tamatjita, Elizabeth Nurmiyati
    Mahastama, Aditya Wikan
    2016 INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT AND TECHNOLOGY (ICIMTECH), 2016, : 118 - 123
  • [4] ECG Beat Classification using Evidential K-Nearest Neighbours
    Faziludeen, Shameer
    Sankaran, Praveen
    TWELFTH INTERNATIONAL CONFERENCE ON COMMUNICATION NETWORKS, ICCN 2016 / TWELFTH INTERNATIONAL CONFERENCE ON DATA MINING AND WAREHOUSING, ICDMW 2016 / TWELFTH INTERNATIONAL CONFERENCE ON IMAGE AND SIGNAL PROCESSING, ICISP 2016, 2016, 89 : 499 - 505
  • [5] Nearest neighbor classification using cam weighted distance
    Zhou, CY
    Chen, YQ
    FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PT 2, PROCEEDINGS, 2005, 3614 : 100 - 109
  • [6] Combining Minkowski and Cheyshev: New distance proposal and survey of distance metrics using k-nearest neighbours classifier
    Rodrigues, E. O.
    PATTERN RECOGNITION LETTERS, 2018, 110 : 66 - 71
  • [7] Bagged k-nearest neighbours classification with uncertainty in the variables
    Villa Medina, Joe L.
    Boque, Ricard
    Ferre, Joan
    ANALYTICA CHIMICA ACTA, 2009, 646 (1-2) : 62 - 68
  • [8] Watermelon classification using k-nearest neighbours based on first order statistics extraction
    Liantoni, Febri
    Perwira, Rifki Indra
    Putri, Lusi Dwi
    Manurung, Rosida Tiurma
    Kahar, Muhammad Syahrul
    Safitri, Jehan
    Muharlisiani, Lusy Tunik
    Chamidah, Dina
    Ghofur, Abd
    Kurniawan, Putu Sukma
    Wityasminingsih, E.
    Yuniningsih
    Susilo
    Yusuf, Muhammad
    Kurniawan, Muh Ardian
    Sumitro
    Sutjiatmo, Bayu Prabowo
    Muna, Nalal
    Fatmasari, Fajria
    Widodo, Sarono
    Syamsudin, Andi Reni
    Daeng, Achmad G. S.
    Nuris, Dudung Ma'ruf
    Suryaratri, Ratna Dyah
    Suryaningsih, Tutut
    Mulyaningsih, Indrya
    Nawas, Tari
    1ST INTERNATIONAL CONFERENCE ON ADVANCE AND SCIENTIFIC INNOVATION, 2019, 1175
  • [9] Nearest Neighbour Distance Matrix Classification
    Sainin, Mohd Shamrie
    Alfred, Rayner
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2010, PT I, 2010, 6440 : 114 - 124
  • [10] Premature ventricular contraction classification by the Kth nearest-neighbours rule
    Christov, I
    Jekova, I
    Bortolan, G
    PHYSIOLOGICAL MEASUREMENT, 2005, 26 (01) : 123 - 130