A Clustering Approach for the Analysis of Solar Energy Yields: a Case Study for Concentrating Solar Thermal Power Plants

被引:4
|
作者
Fernandez Peruchena, Carlos M. [1 ]
Garcia-Barberena, Javier [1 ]
Vicenta Guisado, Maria [1 ]
Gaston, Martin [1 ]
机构
[1] Natl Renewable Energy Ctr CENER, C Isaac Newton 4 Pabellon Italia, Seville 41092, Spain
关键词
day selection; CSTP; cluster; optimization; AVERAGES; SERIES; ZONES;
D O I
10.1063/1.4949155
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The design of Concentrating Solar Thermal Power (CSTP) systems requires a detailed knowledge of the dynamic behavior of the meteorology at the site of interest. Meteorological series are often condensed into one representative year with the aim of data volume reduction and speeding-up of energy system simulations, defined as Typical Meteorological Year (TMY). This approach seems to be appropriate for rather detailed simulations of a specific plant; however, in previous stages of the design of a power plant, especially during the optimization of the large number of plant parameters before a final design is reached, a huge number of simulations are needed. Even with today's technology, the computational effort to simulate solar energy system performance with one year of data at high frequency (as 1-min) may become colossal if a multivariable optimization has to be performed. This work presents a simple and efficient methodology for selecting number of individual days able to represent the electrical production of the plant throughout the complete year. To achieve this objective, a new procedure for determining a reduced set of typical weather data in order to evaluate the long-term performance of a solar energy system is proposed. The proposed methodology is based on cluster analysis and permits to drastically reduce computational effort related to the calculation of a CSTP plant energy yield by simulating a reduced number of days from a high frequency TMY.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS
    Kuravi, Sarada
    Goswami, Yogi
    Stefanakos, Elias K.
    Ram, Manoj
    Jotshi, Chand
    Pendyala, Swetha
    Trahan, Jamie
    Sridharan, Prashanth
    Rahman, Muhammad
    Krakow, Burton
    TECHNOLOGY AND INNOVATION, 2012, 14 (02) : 81 - 91
  • [2] Study of Direct Thermal Energy Storage Technologies for Effectiveness of Concentrating Solar Power Plants
    Ravaghi-Ardebili, Zohreh
    Manenti, Flavio
    Lima, Nadson M. N.
    Linan, Lamia Zuniga
    ICHEAP-11: 11TH INTERNATIONAL CONFERENCE ON CHEMICAL AND PROCESS ENGINEERING, PTS 1-4, 2013, 32 : 1219 - 1224
  • [3] Thermal energy storage technologies and systems for concentrating solar power plants
    Kuravi, Sarada
    Trahan, Jamie
    Goswami, D. Yogi
    Rahman, Muhammad M.
    Stefanakos, Elias K.
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2013, 39 (04) : 285 - 319
  • [4] Assessment of Direct Thermal Energy Storage Technologies for Concentrating Solar Power Plants
    Ravaghi-Ardebili, Zohreh
    Manenti, Flavio
    Corbetta, Michele
    Lima, Nadson M. N.
    Linan, Lamia Zuniga
    Papasidero, Davide
    16TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION (PRES'13), 2013, 35 : 547 - 552
  • [5] Estimating the Capacity Value of Concentrating Solar Power Plants With Thermal Energy Storage: A Case Study of the Southwestern United States
    Madaeni, Seyed Hossein
    Sioshansi, Ramteen
    Denholm, Paul
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (02) : 1205 - 1215
  • [6] PERFORMANCE ANALYSIS OF A METAL HYDRIDE-THERMAL ENERGY STORAGE SYSTEM FOR CONCENTRATING SOLAR POWER PLANTS
    Alqahtani, Talal
    Mellouli, Sofiene
    Askri, Faouzi
    Phelan, Patrick E.
    4TH THERMAL AND FLUIDS ENGINEERING CONFERENCE, ASTFE 2019, 2019,
  • [7] Thermal stability of granite for high temperature thermal energy storage in concentrating solar power plants
    Li, Baiyi
    Ju, Feng
    APPLIED THERMAL ENGINEERING, 2018, 138 : 409 - 416
  • [8] Screening analysis of metal hydride based thermal energy storage systems for concentrating solar power plants
    Corgnale, Claudio
    Hardy, Bruce
    Motyka, Theodore
    Zidan, Ragaiy
    Teprovich, Joseph
    Peters, Brent
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 38 : 821 - 833
  • [9] Concentrating solar thermal power
    Mueller-Steinhagen, Hans
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1996):
  • [10] The Value of Concentrating Solar Power and Thermal Energy Storage
    Sioshansi, Ramteen
    Denholm, Paul
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2010, 1 (03) : 173 - 183