Mean-field approximation to a spatial host-pathogen model

被引:32
|
作者
de Aguiar, MAM [1 ]
Rauch, EM
Bar-Yam, Y
机构
[1] New England Complex Syst Inst, Cambridge, MA 02138 USA
[2] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil
[3] MIT, Artificial Intelligence Lab, Cambridge, MA 02139 USA
[4] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 04期
关键词
D O I
10.1103/PhysRevE.67.047102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the mean-field approximation to a simple spatial host-pathogen model that has been shown to display interesting evolutionary properties. We show that previous derivations of the mean-field equations for this model are actually only low-density approximations to the true mean-field limit. We derive the correct equations and the corresponding equations including pair correlations. The process of invasion by a mutant type of pathogen is also discussed.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Mean-field approximation to a spatial host-pathogen model (vol 67, 047102, 2003)
    de Aguiar, M. A. M.
    Rauch, E. M.
    Stacey, B. C.
    Bar-Yam, Y.
    PHYSICAL REVIEW E, 2013, 88 (03):
  • [2] Invasion and Extinction in the Mean Field Approximation for a Spatial Host-Pathogen Model
    M. A. M. de Aguiar
    E. M. Rauch
    Y. Bar-Yam
    Journal of Statistical Physics, 2004, 114 : 1417 - 1451
  • [3] Invasion and extinction in the mean field approximation for a spatial host-pathogen model
    de Aguiar, MAM
    Rauch, EM
    Bar-Yam, Y
    JOURNAL OF STATISTICAL PHYSICS, 2004, 114 (5-6) : 1417 - 1451
  • [4] Model study of the sign problem in the mean-field approximation
    Fukushima, Kenji
    Hidaka, Yoshimasa
    PHYSICAL REVIEW D, 2007, 75 (03):
  • [5] Breakdown of the mean-field approximation in a wealth distribution model
    Medo, M.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [6] The McCoy-Wu model in the mean-field approximation
    Berche, B
    Berche, PE
    Igloi, F
    Palagyi, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (23): : 5193 - 5202
  • [7] The boson-fermion model in the mean-field approximation
    Piegari, E
    Cataudella, V
    Iadonisi, G
    PHYSICA C, 1998, 303 (3-4): : 273 - 286
  • [8] Mean-field approximation for the Sznajd model in complex networks
    Araujo, Maycon S.
    Vannucchi, Fabio S.
    Timpanaro, Andre M.
    Prado, Carmen P. C.
    PHYSICAL REVIEW E, 2015, 91 (02):
  • [9] Quantized mean-field approximation
    Brooksby, C
    Prezhdo, OV
    CHEMICAL PHYSICS LETTERS, 2001, 346 (5-6) : 463 - 469
  • [10] Mean-field approximation for the potts model of a diluted magnet in the external field
    Semkin, S. V.
    Smagin, V. P.
    PHYSICS OF THE SOLID STATE, 2016, 58 (07) : 1350 - 1354