Phase Space Reduction of the One-Dimensional Fokker-Planck (Kramers) Equation

被引:7
|
作者
Kalinay, Pavol [1 ]
Percus, Jerome K. [2 ,3 ]
机构
[1] Slovak Acad Sci, Inst Phys, Bratislava 84511, Slovakia
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] NYU, Dept Phys, New York, NY 10003 USA
关键词
Confined diffusion; Mapping; Inertial effects; Smoluchowski equation; BROWNIAN-MOTION; DIFFUSION; NOISE;
D O I
10.1007/s10955-012-0570-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A point-like particle of finite mass m, moving in a one-dimensional viscous environment and biased by a spatially dependent force, is considered. We present a rigorous mapping of the 1D Fokker-Planck (Kramers) equation, which determines evolution of the particle density in phase space, onto the spatial coordinate x. The result is the Smoluchowski equation, valid in the overdamped limit, m -> 0, with a series of corrections expanded in powers of m/gamma, gamma denotes the friction coefficient. The corrections are determined unambiguously within the recurrence mapping procedure. The method and the results are interpreted on the simplest model with no field and on the damped harmonic oscillator.
引用
收藏
页码:1135 / 1155
页数:21
相关论文
共 50 条
  • [1] Phase Space Reduction of the One-Dimensional Fokker-Planck (Kramers) Equation
    Pavol Kalinay
    Jerome K. Percus
    Journal of Statistical Physics, 2012, 148 : 1135 - 1155
  • [2] SIMILARITY SOLUTIONS OF THE ONE-DIMENSIONAL FOKKER-PLANCK EQUATION
    SUCCI, S
    IACONO, R
    PHYSICAL REVIEW A, 1986, 33 (06): : 4419 - 4422
  • [3] LAPLACE TRANSFORM APPROACH FOR ONE-DIMENSIONAL FOKKER-PLANCK EQUATION
    Zarrinkamar, S.
    Panahi, H.
    Hosseini, F.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2017, 79 (03): : 213 - 220
  • [5] FREQUENCY EXPANSION METHOD FOR THE ONE-DIMENSIONAL FOKKER-PLANCK EQUATION
    MIYAZAWA, T
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (04) : 1587 - 1605
  • [6] One-dimensional Fokker-Planck equation with relativistic effects for numerical simulations
    Khavin, V. E.
    Popov, A. Yu.
    Teplova, N. V.
    Troshin, G. A.
    Gusakov, E. Z.
    ST PETERSBURG POLYTECHNIC UNIVERSITY JOURNAL-PHYSICS AND MATHEMATICS, 2023, 16 (01): : 331 - 335
  • [7] First-passage distributions for the one-dimensional Fokker-Planck equation
    Artime, Oriol
    Khalil, Nagi
    Toral, Raul
    San Miguel, Maxi
    PHYSICAL REVIEW E, 2018, 98 (04)
  • [8] FOKKER-PLANCK COEFFICIENTS FOR A ONE-DIMENSIONAL PLASMA
    ELDRIDGE, O
    FEIX, M
    PHYSICS OF FLUIDS, 1962, 5 (10) : 1307 - 1308
  • [9] One-Dimensional Fokker-Planck Equation with Quadratically Nonlinear Quasilocal Drift
    Shapovalov, A. V.
    RUSSIAN PHYSICS JOURNAL, 2018, 60 (12) : 2063 - 2072
  • [10] Potential symmetries and invariant solutions for the generalized one-dimensional Fokker-Planck equation
    Khater, AH
    Moussa, MHM
    Abdul-Aziz, SF
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 304 (3-4) : 395 - 408