An Adaptive Unscented Kalman Filtering Approach for Online Estimation of Model Parameters and State-of-Charge of Lithium-Ion Batteries for Autonomous Mobile Robots

被引:253
|
作者
Partovibakhsh, Maral [1 ]
Liu, Guangjun [1 ]
机构
[1] Ryerson Univ, Dept Aerosp Engn, Toronto, ON M5B 2K3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Adaptive extended Kalman filter (AEKF); adaptive unscented Kalman filter (AUKF); lithium-ion battery; online parameter estimation; state of charge (SoC); LEAD-ACID-BATTERIES; MANAGEMENT-SYSTEMS; PREDICTING STATE; PACKS;
D O I
10.1109/TCST.2014.2317781
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this brief, to get a more accurate and robust state of charge (SoC) estimation, the lithium-ion battery model parameters are identified using an adaptive unscented Kalman filtering method, and based on the updated model, the battery SoC is estimated consequently. An adaptive adjustment of the noise covariances in the estimation process is implemented using a technique of covariance matching in the unscented Kalman filter (UKF) context. The effectiveness of the proposed method is evaluated through experiments under different power duties in the laboratory environment. The obtained results are compared with that of the adaptive extended Kalman filter, extended Kalman filter, and unscented Kalman filter-based algorithms. The comparison shows that the proposed method provides better accuracy both in battery model parameters estimation and the battery SoC estimation.
引用
收藏
页码:357 / 363
页数:7
相关论文
共 50 条
  • [1] An improved adaptive spherical unscented Kalman filtering method for the accurate state-of-charge estimation of lithium-ion batteries
    Qi, Chuangshi
    Wang, Shunli
    Cao, Wen
    Yu, Peng
    Xie, Yanxin
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2022, 50 (10) : 3487 - 3502
  • [2] Online Estimation of Model Parameters and State-of-Charge of Lithium-Ion Battery Using Unscented Kalman Filter
    Partovibakhsh, Maral
    Liu, Guangjun
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 3962 - 3967
  • [3] An unscented kalman filtering method for estimation of state-of-charge of lithium-ion battery
    Guo, Jishu
    Liu, Shulin
    Zhu, Rui
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [4] An improved adaptive unscented kalman filtering for state of charge online estimation of lithium-ion battery
    Zhang, Shuzhi
    Guo, Xu
    Zhang, Xiongwen
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [5] A Novel Square-Root Adaptive Unscented Kalman Filtering Method for Accurate State-of-Charge Estimation of Lithium-ion Batteries
    Wang, Shunli
    Gao, Haiying
    Qiao, Jialu
    Cao, Jie
    Fernandez, Carlos
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (07):
  • [6] Fractional Extended and Unscented Kalman Filtering for State of Charge Estimation of Lithium-Ion Batteries
    Kupper, Martin
    Funk, Christopher
    Eckert, Marius
    Hohmann, Soeren
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 3855 - 3862
  • [7] State-of-Charge Estimation of Lithium-ion Batteries using Extended Kalman filter and Unscented Kalman filter
    Jokic, Ivan
    Zecevic, Zarko
    Krstajic, Bozo
    2018 23RD INTERNATIONAL SCIENTIFIC-PROFESSIONAL CONFERENCE ON INFORMATION TECHNOLOGY (IT), 2018,
  • [8] Adaptive state-of-charge estimation of lithium-ion batteries based on square-root unscented Kalman filter
    Chen, Liping
    Wu, Xiaobo
    Lopes, Antonio M.
    Yin, Lisheng
    Li, Penghua
    ENERGY, 2022, 252
  • [9] Online parameters identification and state of charge estimation for lithium-ion batteries using improved adaptive dual unscented Kalman filter
    Peng, Nian
    Zhang, Shuzhi
    Guo, Xu
    Zhang, Xiongwen
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (01) : 975 - 990
  • [10] An Adaptive Square Root Unscented Kalman Filter Approach for State of Charge Estimation of Lithium-Ion Batteries
    Liu, Shulin
    Cui, Naxin
    Zhang, Chenghui
    ENERGIES, 2017, 10 (09):