Generation of new classes of exactly solvable potential from the trigonometric Rosen-Morse potential

被引:5
|
作者
Ahmed, S. A. S. [1 ]
Buragohain, L. [2 ]
机构
[1] Gauhati Univ, Dept Phys, Gauhati 781014, Assam, India
[2] Chaiduar Coll, Dept Phys, Gohpur 784168, Assam, India
关键词
Exactly analytic solutions; Schrodinger equation; Rosen - Morse potential;
D O I
10.1007/s12648-010-0081-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Exact analytic solutions of the Schrodinger equation are obtained for classes of newly constructed potentials which are generated from the trigonometric Rosen-Morse potential as the input reference potential via extended transformation method. A set of quantized energy spectra of the bound states and the corresponding wave functions of the generated potentials are obtained. We also focus on to the Romanovski Polynomials which is a family of the real orthogonal polynomials and is required to present exact real analytic solutions of the generated potentials.
引用
收藏
页码:741 / 744
页数:4
相关论文
共 50 条
  • [1] Generation of new classes of exactly solvable potential from the trigonometric Rosen-Morse potential
    S. A. S. Ahmed
    L. Buragohain
    Indian Journal of Physics, 2010, 84 : 741 - 744
  • [2] Momentum space trigonometric Rosen-Morse potential
    Compean, C. B.
    Kirchbach, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (36)
  • [3] The trigonometric Rosen-Morse potential as a prime candidate for an effective QCD potential
    Compean Jasso, Cliffor Benjamin
    Kirchbach, Mariana
    PARTICLES AND FIELDS, PT A, 2006, 857 : 275 - +
  • [4] On the exact solubility in momentum space of the trigonometric Rosen-Morse potential
    Compean, C. B.
    Kirchbach, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (01)
  • [5] Spectral manipulation of the trigonometric Rosen-Morse potential through supersymmetry
    Fernandez, David J.
    Reyes, Rosa
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [6] Quantum information entropies for an asymmetric trigonometric Rosen-Morse potential
    Sun, Guo-Hua
    Dong, Shi-Hai
    Saad, Nasser
    ANNALEN DER PHYSIK, 2013, 525 (12) : 934 - 943
  • [7] Information theoretic spreading measures of the symmetric trigonometric Rosen-Morse potential
    Nath, D.
    PHYSICA SCRIPTA, 2014, 89 (06)
  • [8] Quantum information entropies of the eigenstates for a symmetrically trigonometric Rosen-Morse potential
    Sun, Guo-Hua
    Dong, Shi-Hai
    PHYSICA SCRIPTA, 2013, 87 (04)
  • [9] Gazeau-Klauder coherent states for trigonometric Rosen-Morse potential
    Chenaghlou, A.
    Faizy, O.
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (02)
  • [10] Rosen-Morse potential and gravitating kinks
    Wang, Hui
    Zhong, Yuan
    Wang, Ziqi
    PHYSICS LETTERS B, 2024, 858