Label-free DNA biosensing by topological light confinement

被引:22
|
作者
Zito, Gianluigi [1 ]
Sanita, Gennaro [1 ]
Alulema, Bryan Guilcapi [1 ]
Yepez, Sofia N. Lara [1 ]
Lanzio, Vittorino [2 ]
Riminucci, Fabrizio [2 ]
Cabrini, Stefano [2 ]
Moccia, Maria [3 ]
Avitabile, Concetta [3 ]
Lamberti, Annalisa [4 ]
Mocella, Vito [1 ]
Rendina, Ivo [1 ]
Romano, Silvia [1 ]
机构
[1] CNR, Inst Appl Sci & Intelligent Syst, Naples, Italy
[2] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA USA
[3] CNR, Inst Crystallog, Bari, Italy
[4] Univ Naples Federico II, Dept Mol Med & Med Biotechnol, Naples, Italy
关键词
biosensors; bound states in the continuum; DNA; photonic crystals; BOUND-STATES; SHIFT; CONTINUUM;
D O I
10.1515/nanoph-2021-0396
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Large-area and transparent all-dielectric metasurfaces sustaining photonic bound states in the continuum (BICs) provide a set of fundamental advantages for ultrasensitive biosensing. BICs bridge the gap of large effective mode volume with large experimental quality factor. Relying on the transduction mechanism of reactive sensing principle, herein, we first numerically study the potential of subwavelength confinement driven by topological decoupling from free space radiation for BICbased biosensing. Then, we experimentally combine this capability with minimal and low-cost optical setup, applying the devised quasi-BIC resonator for PNA/DNA selective biosensing with real-time monitoring of the binding event. A sensitivity of 20 molecules per micron squared is achieved, i.e. similar or equal to 0.01 pg. Further enhancement can easily be envisaged, pointing out the possibility of single-molecule regime. This work aims at a precise and ultrasensitive approach for developing low-cost point-of-care tools suitable for routine disease prescreening analyses in laboratory, also adaptable to industrial production control.
引用
收藏
页码:4279 / 4287
页数:9
相关论文
共 50 条
  • [1] Decorated graphene sheets for label-free DNA impedance biosensing
    Hu, Yuwei
    Wang, Kaikai
    Zhang, Qixian
    Li, Fenghua
    Wu, Tongshun
    Niu, Li
    BIOMATERIALS, 2012, 33 (04) : 1097 - 1106
  • [2] A label-free platform for dopamine biosensing
    Navarro, Jesus
    Galban, Javier
    de Marcos, Susana
    BIOANALYSIS, 2018, 10 (01) : 11 - 21
  • [3] Plasmonic Metamaterials for Label-free Biosensing
    Zayats, Anatoly V.
    2010 IEEE SENSORS, 2010, : 2165 - 2165
  • [4] Magnetoplasmons for Ultrasensitive Label-Free Biosensing
    Chandra, Sayan
    Cozart, Jared
    Biswas, Aritra
    Lee, Sang
    Chanda, Debashis
    ACS PHOTONICS, 2021, 8 (05) : 1316 - 1323
  • [5] ELECTRONIC LABEL-FREE BIOSENSING ASSAYS
    Reed, Mark A.
    2013 IEEE SENSORS, 2013, : 20 - 20
  • [6] Designer Interfaces for Label-free Biosensing
    Goda, Tatsuro
    SENSORS AND MATERIALS, 2021, 33 (01) : 191 - 200
  • [7] Label-free biosensing with hydrogel microlenses
    Kim, JS
    Singh, N
    Lyon, LA
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (09) : 1446 - 1449
  • [8] Rapid DNA electrochemical biosensing platform for label-free potentiometric detection of DNA hybridization
    Du, Meng
    Yang, Tao
    Jiao, Kui
    TALANTA, 2010, 81 (03) : 1022 - 1027
  • [9] Label-free DNA-based biosensing using luminescent metal complexes
    Ma, Dik-Lung
    JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2014, 19 : S754 - S755
  • [10] Selection and Characterization of a Novel DNA Aptamer for Label-Free Fluorescence Biosensing of Ochratoxin A
    McKeague, Maureen
    Velu, Ranganathan
    Hill, Kayla
    Bardoczy, Viola
    Meszaros, Tamas
    DeRosa, Maria C.
    TOXINS, 2014, 6 (08): : 2435 - 2452