Improved Variational Mode Decomposition and One-Dimensional CNN Network with Parametric Rectified Linear Unit (PReLU) Approach for Rolling Bearing Fault Diagnosis

被引:9
|
作者
Wang, Xiaofeng [1 ]
Liu, Xiuyan [1 ]
Wang, Jinlong [1 ]
Xiong, Xiaoyun [1 ]
Bi, Suhuan [1 ]
Deng, Zhaopeng [1 ]
机构
[1] Qingdao Univ Technol, Sch Informat & Control Engn, 777 Jialingjiang East Rd, Qingdao 266525, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 18期
基金
中国国家自然科学基金;
关键词
bearing fault diagnosis; grey wolf optimization (GWO); variational modal decomposition (VMD); convolutional neural network (CNN); parametric rectified linear unit (PReLU); FEATURE-EXTRACTION; SPECTRUM; VMD;
D O I
10.3390/app12189324
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As a critical component of rotating machinery, rolling bearings are essential for the safe and efficient operation of machinery. Sudden faults of rolling bearings can lead to unscheduled downtime and substantial economic costs. Therefore, diagnosing and identifying the equipment status is essential for ensuring the operation and decreasing the additional maintenance costs of the machines. However, extracting the features from the early bearing fault signals is challenging under background noise interference. With the purpose of solving the above problem, we propose an integrated rolling bearing fault diagnosis model based on the improved grey wolf optimized variational modal decomposition (IGVMD) and an improved 1DCNN with a parametric rectified linear unit (PReLU). Firstly, an improved grey wolf optimizer (IGWO) with the fitness function, the minimum envelope entropy, is designed for adaptively searching the optimal parameter values of the VMD model. The performance of the basic grey wolf optimizer (GWO) algorithm by introducing three improvement strategies, the non-linear convergence factor adjustment strategy, the grey wolf adaptive position update strategy, and the Levy flight strategy in the IGWO algorithm, is improved. Then, an improved 1DCNN model with the PReLU activation function is proposed, which extracts the bearing fault features, and a grid search to optimize the model parameters of the 1DCNN is introduced. Finally, the effectiveness of the proposed model is demonstrated well by employing two experimental datasets. The preliminary comparative results of the average identification accuracy in the proposed method in two datasets are 99.98% and 99.50%, respectively, suggesting that this proposed method has a relatively higher recognition accuracy and application values.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Intelligent fault diagnosis of rolling bearing using variational mode extraction and improved one-dimensional convolutional neural network
    Ye, Maoyou
    Yan, Xiaoan
    Chen, Ning
    Jia, Minping
    APPLIED ACOUSTICS, 2023, 202
  • [2] An Improved Bearing Fault Diagnosis Method using One-Dimensional CNN and LSTM
    Pan, Honghu
    He, Xingxi
    Tang, Sai
    Meng, Fanming
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2018, 64 (7-8): : 443 - 452
  • [3] Bearing Fault Diagnosis Based on Parameter-Optimized Variational Mode Extraction and an Improved One-Dimensional Convolutional Neural Network
    Zhang, Dongliang
    Tao, Hanming
    APPLIED SCIENCES-BASEL, 2024, 14 (08):
  • [4] Rolling Bearing Fault Diagnosis Method Based on Improved Variational Mode Decomposition and Information Entropy
    Ge, Liang
    Fan, Wen
    Xiao, Xiaoting
    Gan, Fangji
    Lai, Xin
    Deng, Hongxia
    Huang, Qi
    ENGINEERING TRANSACTIONS, 2022, 70 (01): : 23 - 51
  • [5] Rolling bearing fault diagnosis using variational mode decomposition and deep convolutional neural network
    Ding C.
    Feng Y.
    Wang M.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2021, 40 (02): : 287 - 296
  • [6] Rolling bearing fault diagnosis based on improved whale-optimizationalgorithm-variational-mode-decomposition method
    Xu, Chuannuo
    Cheng, Xuezhen
    Wang, Yi
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (02) : 4669 - 4680
  • [7] Rolling Bearing Fault Diagnosis Based on Variational Mode Decomposition and Permutation Entropy
    Tang, Guiji
    Wang, Xiaolong
    He, Yuling
    Liu, Shangkun
    2016 13TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2016, : 626 - 631
  • [8] Application of Variational Mode Decomposition and Permutation Entropy for Rolling Bearing Fault Diagnosis
    Zheng, Xiaoxia
    Zhou, Guowang
    Li, Dongdong
    Zhou, Rongcheng
    Ren, Haohan
    INTERNATIONAL JOURNAL OF ACOUSTICS AND VIBRATION, 2019, 24 (02): : 303 - 311
  • [9] A Novel Fault Diagnosis of a Rolling Bearing Method Based on Variational Mode Decomposition and an Artificial Neural Network
    Liang, Xiaobei
    Yao, Jinyong
    Zhang, Weifang
    Wang, Yanrong
    APPLIED SCIENCES-BASEL, 2023, 13 (06):
  • [10] Improved Variational Mode Decomposition and CNN for Intelligent Rotating Machinery Fault Diagnosis
    Xiao, Qiyang
    Li, Sen
    Zhou, Lin
    Shi, Wentao
    ENTROPY, 2022, 24 (07)