An unscented Kalman filter based navigation algorithm for autonomous underwater vehicles

被引:77
|
作者
Allotta, B. [1 ,6 ]
Caiti, A. [3 ,4 ,6 ]
Chisci, L. [2 ]
Costanzi, R. [3 ,4 ,6 ]
Di Corato, F. [5 ]
Fantacci, C. [2 ]
Fenucci, D. [3 ,4 ,6 ]
Meli, E. [1 ,6 ]
Ridolfi, A. [1 ,6 ]
机构
[1] Univ Florence, Dept Ind Engn DIEF, Via Santa Marta 3, Florence, Italy
[2] Univ Florence, Dept Informat Engn DINFO, Via Santa Marta 3, Florence, Italy
[3] Univ Pisa, DII, Largo Lucio Lazzarino 1, Pisa, Italy
[4] Univ Pisa, Ctr Enrico Piaggio, Largo Lucio Lazzarino 1, Pisa, Italy
[5] Magneti Marelli SpA, ADAS Technol, Venaria, TO, Italy
[6] Interuniv Ctr Integrated Syst Marine Environm ISM, Genoa, Italy
关键词
Underwater navigation; Autonomous underwater vehicles; Unscented Kalman filter; Underwater robotics; COOPERATIVE LOCALIZATION; AUVS;
D O I
10.1016/j.mechatronics.2016.05.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robust and performing navigation systems for Autonomous Underwater Vehicles (AUVs) play a discriminant role towards the success of complex underwater missions involving one or more AUVs. The quality of the filtering algorithm for the estimation of the AUV navigation state strongly affects the performance of the overall system. In this paper, the authors present a comparison between the Extended Kalman Filter (EKF) approach, classically used in the field of underwater robotics and an Unscented. Kalman Filter (UKF). The comparison results to be significant as the two strategies of filtering are based on the same process and sensors models. The UKF-based approach, here adapted to the AUV case, demonstrates to be a good trade-off between estimation accuracy and computational load. UKF has not yet been extensively used in practical underwater applications, even if it turns out to be quite promising. The proposed results rely on the data acquired during a sea mission performed by one of the two Typhoon class vehicles involved in the NATO CommsNetl3 experiment (held in September 2013). As ground truth for performance evaluation and comparison, performed offline, position measurements obtained through Ultra-Short Base Line (USBL) fixes are used. The result analysis leads to identify both the strategies as effective for the purpose of being included in the control loop of an AUV. The UKF approach demonstrates higher performance encouraging its implementation as a more suitable navigation algorithm even if, up to now, it is still not used much in this field. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:185 / 195
页数:11
相关论文
共 50 条
  • [1] AN INNOVATIVE NAVIGATION STRATEGY FOR AUTONOMOUS UNDERWATER VEHICLES: AN UNSCENTED KALMAN FILTER BASED APPROACH
    Allotta, Benedetto
    Costanzi, Riccardo
    Meli, Enrico
    Ridolfi, Alessandro
    Chisci, Luigi
    Fantacci, Claudio
    Caiti, Andrea
    Di Corato, Francesco
    Fenucci, Davide
    INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2015, VOL 5A, 2016,
  • [2] An Improved Unscented Kalman Filter Applied to Positioning and Navigation of Autonomous Underwater Vehicles
    Zhao, Jinchao
    Zhang, Ya
    Li, Shizhong
    Wang, Jiaxuan
    Fang, Lingling
    Ning, Luoyin
    Feng, Jinghao
    Zhang, Jianwu
    SENSORS, 2025, 25 (02)
  • [3] UNSCENTED KALMAN FILTERING FOR AUTONOMOUS UNDERWATER NAVIGATION
    Allotta, Benedetto
    Caiti, Andrea
    Costanzi, Riccardo
    Fanelli, Francesco
    Fenucci, Davide
    Meli, Enrico
    Ridolfi, Alessandro
    COMPUTATIONAL METHODS IN MARINE ENGINEERING VI (MARINE 2015), 2015, : 1150 - 1159
  • [4] Research on The Algorithm of Multi-Autonomous Underwater Vehicles Navigation and Localization Based on The Extended Kalman Filter
    Li, Juan
    Zhang, Juan
    2016 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, 2016, : 2455 - 2460
  • [5] A Huber based Unscented Kalman Filter Terrain Matching Algorithm for Underwater Autonomous Vehicle
    Xiong, Lu
    Shen, Jian
    Bi, Xiaowen
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2019), 2019,
  • [6] Unscented Kalman filter based autonomous optical navigation method
    Sui, Shu-Lin
    Yuan, Jian
    Zhang, Wen-Xia
    2006 CHINESE CONTROL CONFERENCE, VOLS 1-5, 2006, : 1596 - +
  • [7] One method on autonomous navigation based on Unscented Kalman Filter
    Sui Shu-Lin
    Yuan Jian
    Zhang Wen-Xia
    Shao Wei
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 : 1331 - 1333
  • [8] A novel unscented kalman filter in autonomous optical navigation
    Sui Shulin
    Yao Wenlong
    Sun Lihong
    Yuan Jian
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 4, 2007, : 462 - +
  • [9] An Integrated Navigation Algorithm for Underwater Vehicles Improved by a Variational Bayesian and Minimum Mixed Error Entropy Unscented Kalman Filter
    Ji, Binghui
    Sun, Xiaona
    Chen, Peimiao
    Wang, Siyu
    Song, Shangfa
    He, Bo
    ELECTRONICS, 2024, 13 (23):
  • [10] An Adaptive Robust Unscented Kalman Filter-based Matching Algorithm for Underwater Gravity Aided Navigation
    Deng, Zhihong
    Li, Cheng
    Yin, Lijian
    Wang, Bo
    Xiao, Xuan
    2018 IEEE CSAA GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2018,