Finite-time quantum thermodynamic processes

被引:2
|
作者
Jahnke, T. [1 ]
Birjukov, J. [2 ]
Mahler, G. [1 ]
机构
[1] Univ Stuttgart, Inst Theoret Phys 1, D-70550 Stuttgart, Germany
[2] Urals State Pedag Univ, Chair Theoret Phys, Jekaterinburg 620017, Russia
来源
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS | 2007年 / 151卷 / 1期
关键词
Attractor State; European Physical Journal Special Topic; Thermodynamic Quantity; Heat Engine; Quantum Transport;
D O I
10.1140/epjst/e2007-00372-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a single quantum object subject to a parametrized distortion of its discrete spectrum and to a parametrized change of its state, which remains diagonal in its invariant energy eigenbasis. The Carnot and the Otto cycle are investigated in the quasistatic as well as in the dynamic (finite time) regime. The second law is found to be valid as a result of this control, irrespective of the type of attractor states chosen. For specific control functions analytical results are obtained for the work, heat, and efficiency. The influence of dissipation is discussed.
引用
收藏
页码:167 / 180
页数:14
相关论文
共 50 条
  • [1] Finite-time quantum thermodynamic processes
    T. Jahnke
    J. Birjukov
    G. Mahler
    The European Physical Journal Special Topics, 2007, 151 : 167 - 180
  • [2] Simulating Finite-Time Isothermal Processes with Superconducting Quantum Circuits
    Chen, Jin-Fu
    Li, Ying
    Dong, Hui
    ENTROPY, 2021, 23 (03)
  • [3] THERMODYNAMICS FOR PROCESSES IN FINITE-TIME
    ANDRESEN, B
    BERRY, RS
    ONDRECHEN, MJ
    SALAMON, P
    ACCOUNTS OF CHEMICAL RESEARCH, 1984, 17 (08) : 266 - 271
  • [4] Finite-time thermodynamics and thermodynamic length
    Andresen, B
    REVUE GENERALE DE THERMIQUE, 1996, 35 (418-19): : 647 - 650
  • [5] QUANTUM FINITE-TIME AVAILABILITY
    Hoffmann, Karl Heinz
    Salamon, Peter
    Schmidt, Kim
    ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2019, 97
  • [6] A New Quantum Field Theory Approach to the Description of Finite-Time Processes
    Egorov, V. O.
    PHYSICS OF ATOMIC NUCLEI, 2019, 82 (12) : 1631 - 1634
  • [7] A New Quantum Field Theory Approach to the Description of Finite-Time Processes
    V. O. Egorov
    Physics of Atomic Nuclei, 2019, 82 : 1631 - 1634
  • [8] OPTIMAL FINITE-TIME ENDOREVERSIBLE PROCESSES
    SPIRKL, W
    RIES, H
    PHYSICAL REVIEW E, 1995, 52 (04): : 3485 - 3489
  • [9] Linearization of hyperbolic finite-time processes
    Karrasch, Daniel
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (01) : 256 - 282
  • [10] Numerical Experiments of a Finite-Time Thermodynamic Cycle
    Izumida, Yuki
    Okuda, Koji
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2009, (178): : 163 - 168