Study on electrical properties of Si quantum dots based materials

被引:11
|
作者
Lin, Dong [1 ]
Ma, Linzhi [1 ]
Conibeer, Gavin [1 ]
Perez-Wurfl, Ivan [1 ]
机构
[1] Univ New S Wales, Sch Photovolta & Renewable Energy, Sydney, NSW 2052, Australia
来源
基金
澳大利亚研究理事会;
关键词
doping concentration; mobility; photovoltaics; Si quantum dots;
D O I
10.1002/pssb.201000676
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
This article analyses silicon quantum dots based materials which could be used in all-silicon tandem solar cells. The contact properties of aluminium and nickel on this material are obtained by circular transmission line measurements (TLM). Both metals make ohmic contacts with the material and the contact resistance is also similar for both metals, indicating that either the material is very heavily doped or the surface defect density is very high. Doping by diffusion is demonstrated for the first time on this material and a MOS structure is fabricated in order to extract doping type, doping concentration and mobility. A simple model is established for the MOS structure. Using capacitance versus voltage (C V) measurements, we are able to extract doping concentration, mobility and surface charge by curve fitting. Using this fitting method, the relative permittivity of our material is estimated and an effective gate contact area is calculated for different frequencies, doping types and gate voltages. The doping concentration extracted is in the order of 10(17)cm(-3) and the mobility is two to three orders of magnitude lower compared to that of crystalline silicon with a similar doping level. Based on the C-V curves we can demonstrate that B behaves like a p-type dopant and P as an n-type dopant in our material. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:472 / 476
页数:5
相关论文
共 50 条
  • [1] Electrical properties of semiconductor quantum dots
    V. F. Kharlamov
    D. A. Korostelev
    I. G. Bogoraz
    O. A. Milovidova
    V. O. Sergeyev
    Semiconductors, 2013, 47 : 494 - 500
  • [2] Electrical properties of semiconductor quantum dots
    Kharlamov, V. F.
    Korostelev, D. A.
    Bogoraz, I. G.
    Milovidova, O. A.
    Sergeyev, V. O.
    SEMICONDUCTORS, 2013, 47 (04) : 494 - 500
  • [3] Study on growth and morphology properties of Ge/Si(100) quantum dots
    Dept. of Physics, Semiconductor Photonics Research Center, Xiamen University, Xiamen 361005, China
    不详
    Bandaoti Guangdian, 2008, 2 (220-225): : 220 - 225
  • [4] Electrical properties of Cadmium Sulfide quantum dots and polyaniline based nanocomposites
    Rasool, Akhtar
    Rizvi, Tasneem Zahra
    Nayab, Sana
    Iqbal, Zafar
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 854
  • [5] Si quantum dots for nanoelectronics: From materials to applications
    Lombardo, S.
    Spinella, C.
    Rimini, E.
    RIVISTA DEL NUOVO CIMENTO, 2005, 28 (06): : 1 - 31
  • [6] Si quantum dots for nanoelectronics: From materials to applications
    S. Lombardo
    C. Spinella
    E. Rimini
    La Rivista del Nuovo Cimento, 2005, 28 : 1 - 31
  • [7] Excited state properties of Si quantum dots
    Zhang, Rui-Qin
    De Sarkar, Abir
    Niehaus, Thomas A.
    Frauenheim, Thomas
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2012, 249 (02): : 401 - 412
  • [8] Topography and electrical properties of InAs quantum dots
    Schmidt, KH
    Versen, M
    Bock, C
    Reuter, D
    Wieck, AD
    Kunze, U
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2000, 31 (09) : 837 - 844
  • [9] Study of the Structural and Emission Properties of Ge(Si) Quantum Dots Ordered on the Si(001) Surface
    Smagina, Zh. V.
    Zinovyev, V. A.
    Krivyakin, G. K.
    Rodyakina, E. E.
    Kuchinskaya, P. A.
    Fomin, B. I.
    Yablonskiy, A. N.
    Stepikhova, M. V.
    Novikov, A. V.
    Dvurechenskii, A. V.
    SEMICONDUCTORS, 2018, 52 (09) : 1150 - 1155
  • [10] Study of the Structural and Emission Properties of Ge(Si) Quantum Dots Ordered on the Si(001) Surface
    Zh. V. Smagina
    V. A. Zinovyev
    G. K. Krivyakin
    E. E. Rodyakina
    P. A. Kuchinskaya
    B. I. Fomin
    A. N. Yablonskiy
    M. V. Stepikhova
    A. V. Novikov
    A. V. Dvurechenskii
    Semiconductors, 2018, 52 : 1150 - 1155