Medical image segmentation by combing the local, global enhancement, and active contour model

被引:1
|
作者
Voronin, V. [1 ,2 ]
Semenishchev, E. [1 ,2 ]
Pismenskova, M. [1 ,2 ]
Balabaeva, O. [1 ]
Agaian, S. [3 ]
机构
[1] Don State Tech Univ, Lab Math Methods Image Proc & Comp Vis Intelligen, Rostov Na Donu, Russia
[2] Moscow State Univ Technol STANKIN, Moscow, Russia
[3] CUNY Coll Staten Isl, Dept Comp Sci, New York, NY USA
基金
俄罗斯基础研究基金会; 俄罗斯科学基金会;
关键词
medical imaging; image segmentation; enhancement; active contour model; ALGORITHMS;
D O I
10.1117/12.2519584
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The objects in the medical images are not visible due to low contrast and the noise. In general, X-ray, computed tomography (CT), and magnetic resonance imaging (MRI) images are often affected by blurriness, lack of contrast, which are very important for the accuracy of medical diagnosis. It is difficult to segmentation in such case without losing the details of the objects. The goal of image enhancement is to improve certain details of an image and to improve its visual quality. So, image enhancement technology is one of the key procedures in image segmentation for medical imaging. This article presents a two-stage approach, combining novel and traditional algorithms, for the enhancement and segmentation of images of bones obtained from CT. The first stage is a new combined local and global transform domain-based image enhancement algorithm. The basic idea of using local alfa-rooting method is to apply it to different disjoint blocks of different sizes. We used image enhancement non-reference quality measure for optimization alfa-rooting parameters. The second stage applies the modified active contour method based on an anisotropic gradient. The simulation results of the proposed algorithm are compared with other state-of-the-art segmentation methods, and its superiority in the presence of noise and blurred edges on the database of CT images is illustrated.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A hybrid active contour model based on global and local information for medical image segmentation
    Fang, Lingling
    Qiu, Tianshuang
    Zhao, Hongyang
    Lv, Fang
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2019, 30 (02) : 689 - 703
  • [2] A hybrid active contour model based on global and local information for medical image segmentation
    Lingling Fang
    Tianshuang Qiu
    Hongyang Zhao
    Fang Lv
    Multidimensional Systems and Signal Processing, 2019, 30 : 689 - 703
  • [3] Active contour model based on local and global intensity information for medical image segmentation
    Zhou, Sanping
    Wang, Jinjun
    Zhang, Shun
    Liang, Yudong
    Gong, Yihong
    NEUROCOMPUTING, 2016, 186 : 107 - 118
  • [4] Active contour model based on local and global Gaussian fitting energy for medical image segmentation
    Zhao, Wencheng
    Xu, Xianze
    Zhu, Yanyan
    Xu, Fengqiu
    OPTIK, 2018, 158 : 1160 - 1169
  • [5] A medical image segmentation method based on hybrid active contour model with global and local features
    Li, Yuanmu
    Wang, Zhanqing
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (19):
  • [6] Local and Global Active Contour Model for Image Segmentation With intensity Inhomogeneity
    Cai, Qing
    Liu, Huiying
    Qian, Yiming
    Li, Jing
    Duan, Xiaojun
    Yang, Yee-Hong
    IEEE ACCESS, 2018, 6 : 54224 - 54240
  • [7] Active Contour Model via Local and Global Intensity Information for Image Segmentation
    Yuan, Shuai
    Monkam, Patrice
    Li, Siqi
    Song, Haolin
    Zhang, Feng
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 5618 - 5623
  • [8] A global and local active contour model based on dual algorithm for image segmentation
    Xu, Haiyong
    Jiang, Gangyi
    Yu, Mei
    Luo, Ting
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (06) : 1471 - 1488
  • [9] A Novel Active Contour Model for Medical Image Segmentation
    付增良
    叶铭
    苏永琳
    林艳萍
    王成焘
    Journal of Shanghai Jiaotong University(Science), 2010, 15 (05) : 549 - 555
  • [10] A novel active contour model for medical image segmentation
    Fu Z.-L.
    Ye M.
    Su Y.-L.
    Lin Y.-P.
    Wang C.-T.
    Journal of Shanghai Jiaotong University (Science), 2010, 15 (05) : 549 - 555