Collective geodesic flows

被引:3
|
作者
Butler, LT
Paternain, GP
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
[2] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
关键词
collective geodesic flows; topological entropy; semi-simple Lie algebras; moment map; Melnikov integral;
D O I
10.5802/aif.1944
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that most compact semi-simple Lie groups carry many left invariant metrics with positive topological entropy. We also show that many homogeneous spaces admit collective Riemannian metrics arbitrarily close to the bi-invariant metric and whose geodesic flow has positive topological entropy. Other properties of collective geodesic flows are also discussed.
引用
收藏
页码:265 / +
页数:45
相关论文
共 50 条
  • [1] Geodesic compatibility and integrability of geodesic flows
    Topalov, P
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (02) : 913 - 929
  • [2] Are Hamiltonian flows geodesic flows?
    McCord, C
    Meyer, KR
    Offin, D
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (03) : 1237 - 1250
  • [3] GEODESIC FLOWS AND ISOTROPIC FLOWS
    OTSUKI, N
    PROCEEDINGS OF THE JAPAN ACADEMY, 1969, 45 (01): : 10 - &
  • [4] GEODESIC FLOWS MODELLED BY EXPANSIVE FLOWS
    Gelfert, Katrin
    Ruggiero, Rafael O.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (01) : 61 - 95
  • [5] Inheriting geodesic flows
    Lortan, DB
    Maharaj, SD
    Dadhich, NK
    PRAMANA-JOURNAL OF PHYSICS, 2001, 56 (06): : 715 - 722
  • [6] Inheriting geodesic flows
    D B Lortan
    S D Maharaj
    N K Dadhich
    Pramana, 2001, 56 : 715 - 722
  • [7] Templates for geodesic flows
    Pinsky, Tali
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 211 - 235
  • [8] Equicontinuous geodesic flows
    Pries, Christian
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 1951 - 1963
  • [9] GEODESIC FLOWS ARE BERNOULLIAN
    ORNSTEIN, D
    WEISS, B
    ISRAEL JOURNAL OF MATHEMATICS, 1973, 14 (02) : 184 - 198
  • [10] Lorentzian geodesic flows
    Larsen, JC
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1996, 43 (01) : 119 - 170