Dg Manifolds, Formal Exponential Maps and Homotopy Lie Algebras

被引:7
|
作者
Seol, Seokbong [1 ]
Stienon, Mathieu [1 ]
Xu, Ping [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
ROZANSKY-WITTEN INVARIANTS; GEOMETRY; ATIYAH;
D O I
10.1007/s00220-021-04265-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is devoted to the study of the relation between 'formal exponential maps,' the Atiyah class, and Kapranov L-infinity[1] algebras associated with dg manifolds in the C-infinity context. We prove that, for a dg manifold, a 'formal exponential map' exists if and only if the Atiyah class vanishes. Inspired by Kapranov's construction of a homotopy Lie algebra associated with the holomorphic tangent bundle of a complex manifold, we prove that the space of vector fields on a dg manifold admits an L-infinity[1] algebra structure, unique up to isomorphism, whose unary bracket is the Lie derivative with respect to the homological vector field, whose binary bracket is a 1-cocycle representative of the Atiyah class, and whose higher multibrackets can be computed by a recursive formula. For the dg manifold (T-X(0,1)[1],(partial derivative) over bar) arising from a complex manifold X, we prove that this L-infinity[1] algebra structure is quasi-isomorphic to the standard L-infinity[1] algebra structure on the Dolbeault complex Omega(0,.)(T-X(1,0)).
引用
收藏
页码:33 / 76
页数:44
相关论文
共 50 条
  • [1] Dg Manifolds, Formal Exponential Maps and Homotopy Lie Algebras
    Seokbong Seol
    Mathieu Stiénon
    Ping Xu
    Communications in Mathematical Physics, 2022, 391 : 33 - 76
  • [2] Strong homotopy Lie algebras, homotopy Poisson manifolds and Courant algebroids
    Honglei Lang
    Yunhe Sheng
    Xiaomeng Xu
    Letters in Mathematical Physics, 2017, 107 : 861 - 885
  • [3] Strong homotopy Lie algebras, homotopy Poisson manifolds and Courant algebroids
    Lang, Honglei
    Sheng, Yunhe
    Xu, Xiaomeng
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (05) : 861 - 885
  • [4] ON THE ADJOINT MAP OF HOMOTOPY ABELIAN DG-LIE ALGEBRAS
    Iacono, Donatella
    Manetti, Marco
    ARCHIVUM MATHEMATICUM, 2019, 55 (01): : 7 - 15
  • [5] HOMOTOPY DG ALGEBRAS INDUCE HOMOTOPY BV ALGEBRAS
    Terilla, John
    Tradler, Thomas
    Wilson, Scott O.
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2011, 6 (01) : 177 - 182
  • [6] COHERENT SHEAVES ON FORMAL COMPLETE INTERSECTIONS VIA DG LIE ALGEBRAS
    Raskin, Sam
    MATHEMATICAL RESEARCH LETTERS, 2014, 21 (01) : 207 - 223
  • [7] EXAMPLES OF HOMOTOPY LIE ALGEBRAS
    Bering, Klaus
    Lada, Tom
    ARCHIVUM MATHEMATICUM, 2009, 45 (04): : 265 - 277
  • [8] FORMAL HOMOTOPY QUANTUM FIELD THEORIES, I: FORMAL MAPS AND CROSSED C-ALGEBRAS
    Porter, Timothy
    Turaev, Vladimir
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2008, 3 (01) : 113 - 159
  • [9] The structure of homotopy Lie algebras
    Felix, Yves
    Halperin, Steve
    Thomas, Jean-Claude
    COMMENTARII MATHEMATICI HELVETICI, 2009, 84 (04) : 807 - 833
  • [10] Homotopy morphisms between convolution homotopy Lie algebras
    Robert-Nicoud, Daniel
    Wierstra, Felix
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2019, 13 (04) : 1463 - 1520