Decomposing feature-level variation with Covariate Gaussian Process Latent Variable Models

被引:0
|
作者
Martens, Kaspar [1 ]
Campbell, Kieran R. [2 ,3 ,4 ]
Yau, Christopher [5 ,6 ]
机构
[1] Univ Oxford, Dept Stat, Oxford, England
[2] Univ British Columbia, Dept Stat, Vancouver, BC, Canada
[3] BC Canc Agcy, Vancouver, BC, Canada
[4] UBC Data Sci Inst, Vancouver, BC, Canada
[5] Alan Turing Inst, London, England
[6] Univ Birmingham, Inst Canc & Genom Sci, Birmingham, W Midlands, England
基金
英国医学研究理事会; 英国工程与自然科学研究理事会; 加拿大健康研究院;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The interpretation of complex high-dimensional data typically requires the use of dimensionality reduction techniques to extract explanatory low-dimensional representations. However, in many real-world problems these representations may not be sufficient to aid interpretation on their own, and it would be desirable to interpret the model in terms of the original features themselves. Our goal is to characterise how feature-level variation depends on latent low-dimensional representations, external covariates, and non-linear interactions between the two. In this paper, we propose to achieve this through a structured kernel decomposition in a hybrid Gaussian Process model which we call the Covariate Gaussian Process Latent Variable Model (c-GPLVM). We demonstrate the utility of our model on simulated examples and applications in disease progression modelling from high-dimensional gene expression data in the presence of additional phenotypes. In each setting we show how the c-GPLVM can extract low-dimensional structures from high-dimensional data sets whilst allowing a breakdown of feature-level variability that is not present in other commonly used dimensionality reduction approaches.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A review on Gaussian Process Latent Variable Models
    Li, Ping
    Chen, Songcan
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2016, 1 (04) : 366 - +
  • [2] Ensembles of Gaussian process latent variable models
    Ajirak, Marzieh
    Liu, Yuhao
    Djuric, Petar M.
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1467 - 1471
  • [3] Gaussian Mixture Modeling with Gaussian Process Latent Variable Models
    Nickisch, Hannes
    Rasmussen, Carl Edward
    PATTERN RECOGNITION, 2010, 6376 : 272 - 282
  • [4] Manifold Denoising with Gaussian Process Latent Variable Models
    Gao, Yan
    Chan, Kap Luk
    Yau, Wei-Yun
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3719 - 3722
  • [5] Applications of Gaussian Process Latent Variable Models in Finance
    Nirwan, Rajbir S.
    Bertschinger, Nils
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, 2020, 1038 : 1209 - 1221
  • [6] Gaussian process latent variable models for fault detection
    Eciolaza, Luka
    Alkarouri, A.
    Lawrence, N. D.
    Kadirkamanathan, V.
    Fleming, P. J.
    2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, VOLS 1 AND 2, 2007, : 287 - 292
  • [7] Multimodal Gaussian Process Latent Variable Models with Harmonization
    Song, Guoli
    Wang, Shuhui
    Huang, Qingming
    Tian, Qi
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5039 - 5047
  • [8] Tracking the Dimensions of Latent Spaces of Gaussian Process Latent Variable Models
    Liu, Yuhao
    Djuric, Petar M.
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4193 - 4197
  • [9] Covariate dimension reduction for survival data via the Gaussian process latent variable model
    Barrett, James E.
    Coolen, Anthony C. C.
    STATISTICS IN MEDICINE, 2016, 35 (08) : 1340 - 1353
  • [10] Harmonized Multimodal Learning with Gaussian Process Latent Variable Models
    Song, Guoli
    Wang, Shuhui
    Huang, Qingming
    Tian, Qi
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (03) : 858 - 872