In the bacterial cell, individual multimeric proteins and multiprotein assemblies perform and control orderly processes. Individual motor enzyme complexes accomplish highly complex functions, such as nucleic acid and protein syntheses, with impressive efficiency and fidelity. Lac operon repression by the lac repressor is effectively controlled via a single molecular switch. There are only few copies of, for example, DNA polymerase holoenzyme and lac repressor and few specific target molecules:sites, with which these protein complexes interact, present in a single E. coli cell. These interactive processes take place in submicron-sized spaces characterised by extreme crowding (volume exclusion) of macromolecules and small molecules, heterogeneity and non-ideality. Recent evidence reinforces the fundamental difference of the cytoplasmic as compared with, in vitro ("test tube") reaction conditions. This is reflected in the breakdown of the applicability of "bulk phase" thermodynamic, macroscopic chemical kinetic and diffusion laws to interactions of individual macromolecules and target sites in a single cell. Stochastic kinetic models and stochastic simulations enable the statistical description and analysis of biochemical reactions and binding processes which involve small numbers of reactants. New unifying concepts and models are required for the quantitative understanding of the microscopic self-organisation of multiprotein complexes and the dynamic order at the single-protein assembly and single-switch level in the living cell. (C) 2001 Elsevier Science Ltd. All rights reserved.