Degeneracy theorems for meromorphic mappings of complete Kahler manifolds sharing hyperplanes in projective spaces

被引:0
|
作者
Quang, Si Duc [1 ,2 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, 136 Xuan Thuy, Hanoi, Vietnam
[2] Thang Long Inst Math & Appl Sci, Hanoi, Vietnam
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2022年 / 101卷 / 1-2期
关键词
degeneracy theorem; Kahler manifold; non-integrated defect relation; UNIQUENESS PROBLEM; MULTIPLICITIES;
D O I
10.5486/PMD.2022.9143
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a complete Ka spexpressioncing diexpressioneresis hler manifold, whose universal covering is biholomorphic to a ball B-m(R-0) in C-m (0 < R-0 < +infinity). In this article, we will show that if three meromorphic mappings f1, f2, f3 of M into P-n(C) (n >= 2) satisfy the condition (C-rho) and share q (q > C + rho K) hyperplanes in general position regardless of multiplicity with certain positive constants K and C < 2n (explicitly estimated), then there are some algebraic relations between them. A degeneracy theorem for the product of k (2 < k < n + 1) meromorphic mappings sharing hyperplanes is also given. Our results generalize the previous results in the case of meromorphic mappings from C-m into P-n(C).
引用
收藏
页码:47 / 62
页数:16
相关论文
共 50 条