Investigating Anisotropic Quantum Hall States with Bimetric Geometry

被引:45
|
作者
Gromov, Andrey [1 ]
Geraedts, Scott D. [2 ]
Bradlyn, Barry [3 ]
机构
[1] Univ Chicago, Kadanoff Ctr Theoret Phys, Chicago, IL 60637 USA
[2] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[3] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
COLLECTIVE EXCITATIONS; LIQUID;
D O I
10.1103/PhysRevLett.119.146602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a low energy effective theory of anisotropic fractional quantum Hall (FQH) states. We develop a formalism similar to that used in the bimetric approach to massive gravity, and apply it to describe Abelian anisotropic FQH states in the presence of external electromagnetic and geometric backgrounds. We derive a relationship between the shift, the Hall viscosity, and a new quantized coupling to anisotropy, which we term anisospin. We verify this relationship by numerically computing the Hall viscosity for a variety of anisotropic quantum Hall states using the density matrix renormalization group. Finally, we apply these techniques to the problem of nematic order and clarify certain disagreements that exist in the literature about the meaning of the coefficient of the Berry phase term in the nematic effective action.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Investigating Anisotropic Quantum Hall States with Bimetric Geometry (vol 119, 146602, 2017)
    Gromov, Andrey
    Geraedts, Scott D.
    Bradlyn, Barry
    PHYSICAL REVIEW LETTERS, 2018, 120 (08)
  • [2] Publisher's Note: Investigating Anisotropic Quantum Hall States with Bimetric Geometry (vol 119, 146602, 2017)
    Gromov, Andrey
    Geraedts, Scott D.
    Bradlyn, Barry
    PHYSICAL REVIEW LETTERS, 2017, 119 (18)
  • [3] Bimetric Theory of Fractional Quantum Hall States
    Gromov, Andrey
    Son, Dam Thanh
    PHYSICAL REVIEW X, 2017, 7 (04):
  • [4] Principal component analysis of the geometry in anisotropic quantum Hall states
    Jiang, Na
    Ke, Siyao
    Ji, Hengxi
    Wang, Hao
    Hu, Zi-Xiang
    Wan, Xin
    PHYSICAL REVIEW B, 2020, 102 (11)
  • [5] Geometry of flux attachment in anisotropic fractional quantum Hall states
    Ippoliti, Matteo
    Bhatt, R. N.
    Haldane, F. D. M.
    PHYSICAL REVIEW B, 2018, 98 (08)
  • [6] A study of geometry in anisotropic quantum hall states by principal component analysis
    Jiang, Na
    Ke, Siyao
    Ji, Hengxi
    Wang, Hao
    Hu, Zi-Xiang
    Wan, Xin
    arXiv, 2020,
  • [7] Model anisotropic quantum Hall states
    Qiu, R. -Z.
    Haldane, F. D. M.
    Wan, Xin
    Yang, Kun
    Yi, Su
    PHYSICAL REVIEW B, 2012, 85 (11)
  • [8] Nondiagonal anisotropic quantum Hall states
    Tam, Pok Man
    Kane, Charles L.
    PHYSICAL REVIEW B, 2021, 103 (03)
  • [9] Bimetric Theory of Fractional Quantum Hall States (vol 7, 041032, 2017)
    Gromov, Andrey
    Son, Dam Thanh
    PHYSICAL REVIEW X, 2018, 8 (01):
  • [10] Geometry of compressible and incompressible quantum Hall states: Application to anisotropic composite-fermion liquids
    Yang, Kun
    PHYSICAL REVIEW B, 2013, 88 (24):