A Hierarchical Incentive Design Toward Motivating Participation in Coded Federated Learning

被引:30
|
作者
Ng, Jer Shyuan [1 ,2 ]
Lim, Wei Yang Bryan [1 ,2 ]
Xiong, Zehui [3 ]
Cao, Xianbin [4 ]
Niyato, Dusit [5 ]
Leung, Cyril [6 ,7 ]
Kim, Dong In [8 ]
机构
[1] Alibaba Grp, Hangzhou 311121, Peoples R China
[2] Nanyang Technol Univ NTU, Alibaba NTU Joint Res Inst, Singapore 639798, Singapore
[3] Singapore Univ Technol & Design SUTD, Pillar Informat Syst Technol & Design, Singapore 487372, Singapore
[4] Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China
[5] Nanyang Technol Univ NTU, Sch Comp Sci & Engn, Singapore 639798, Singapore
[6] Univ British Columbia UBC, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
[7] Joint NTU UBC Res Ctr Excellence Act Living Elder, Singapore 639798, Singapore
[8] Sungkyunkwan Univ SKKU, Dept Elect & Comp Engn, Seoul 03063, South Korea
基金
新加坡国家研究基金会;
关键词
Computational modeling; Data models; Training; Servers; Task analysis; Statistics; Sociology; Coded distributed computing; federated Learning; straggler effects; evolutionary; deep learning; auction; SERVICE SELECTION; NODE FAILURE; REPUTATION; MECHANISM; NETWORKS;
D O I
10.1109/JSAC.2021.3126057
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Federated Learning (FL) is a privacy-preserving collaborative learning approach that trains artificial intelligence (AI) models without revealing local datasets of the FL workers. While FL ensures the privacy of the FL workers, its performance is limited by several bottlenecks, which become significant given the increasing amounts of data generated and the size of the FL network. One of the main challenges is the straggler effects where the significant computation delays are caused by the slow FL workers. As such, Coded Federated Learning (CFL), which leverages coding techniques to introduce redundant computations to the FL server, has been proposed to reduce the computation latency. In CFL, the FL server helps to compute a subset of the partial gradients based on the composite parity data and aggregates the computed partial gradients with those received from the FL workers. In order to implement the coding schemes over the FL network, incentive mechanisms are important to allocate the resources of the FL workers and data owners efficiently in order to complete the CFL training tasks. In this paper, we consider a two-level incentive mechanism design problem. In the lower level, the data owners are allowed to support the FL training tasks of the FL workers by contributing their data. To model the dynamics of the selection of FL workers by the data owners, an evolutionary game is adopted to achieve an equilibrium solution. In the upper level, a deep learning based auction is proposed to model the competition among the model owners.
引用
收藏
页码:359 / 375
页数:17
相关论文
共 50 条
  • [1] A Hierarchical Incentive Mechanism for Coded Federated Learning
    Ng, Jer Shyuan
    Lim, Wei Yang Bryan
    Xiong, Zehui
    Deng, Xianjun
    Zhang, Yang
    Niyato, Dusit
    Leung, Cyril
    2021 17TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2021), 2021, : 17 - 24
  • [2] Stochastic Coded Federated Learning: Theoretical Analysis and Incentive Mechanism Design
    Sun, Yuchang
    Shao, Jiawei
    Mao, Yuyi
    Li, Songze
    Zhang, Jun
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (06) : 6623 - 6638
  • [3] A Hierarchical Incentive Mechanism for Federated Learning
    Huang, Jiwei
    Ma, Bowen
    Wu, Yuan
    Chen, Ying
    Shen, Xuemin
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 12731 - 12747
  • [4] Incentive Mechanism Design for Unbiased Federated Learning with Randomized Client Participation
    Luo, Bing
    Feng, Yutong
    Wang, Shiqiang
    Huang, Jianwei
    Tassiulas, Leandros
    2023 IEEE 43RD INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, ICDCS, 2023, : 545 - 555
  • [5] Hierarchical Incentive Mechanism Design for Federated Machine Learning in Mobile Networks
    Lim, Wei Yang Bryan
    Xiong, Zehui
    Miao, Chunyan
    Niyato, Dusit
    Yang, Qiang
    Leung, Cyril
    Poor, H. Vincent
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (10) : 9575 - 9588
  • [6] Contribution Matching-Based Hierarchical Incentive Mechanism Design for Crowd Federated Learning
    Zhang, Hangjian
    Jin, Yanan
    Lu, Jianfeng
    Cao, Shuqin
    Dai, Qing
    Yang, Shasha
    IEEE ACCESS, 2024, 12 : 24735 - 24750
  • [7] A Two-Stage Incentive Mechanism Design for Quality Optimization of Hierarchical Federated Learning
    Li, Zhuo
    Du, Hui
    Chen, Xin
    IEEE ACCESS, 2022, 10 : 132752 - 132762
  • [8] A Survey of Incentive Mechanism Design for Federated Learning
    Zhan, Yufeng
    Zhang, Jie
    Hong, Zicong
    Wu, Leijie
    Li, Peng
    Guo, Song
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (02) : 1035 - 1044
  • [9] Incentive Mechanism Design for Federated Learning and Unlearning
    Ding, Ningning
    Sun, Zhenyu
    Wei, Ermin
    Berry, Randall
    PROCEEDINGS OF THE 2023 INTERNATIONAL SYMPOSIUM ON THEORY, ALGORITHMIC FOUNDATIONS, AND PROTOCOL DESIGN FOR MOBILE NETWORKS AND MOBILE COMPUTING, MOBIHOC 2023, 2023, : 11 - 20
  • [10] Incentive Mechanism Design for Vertical Federated Learning
    Yang, Ni
    Cheung, Man Hon
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 3054 - 3059