Automorphism groups of dense subgroups of Rn

被引:1
|
作者
Chatyrko, Vitalij A. [1 ]
Shakhmatov, Dmitri B. [2 ]
机构
[1] Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden
[2] Ehime Univ, Grad Sch Sci & Engn, Div Sci, Bunkyo Cho 2-5, Matsuyama, Ehime 7908577, Japan
关键词
Automorphism group; Dense subgroup of R-n; The general linear group GL(n; R); The special linear group SL(n); The orthogonal group O(n); The special orthogonal group SO(n); Complete topological vector space; Finite-dimensional vector space; Transcendental field extension; Algebraic number; Laurent polynomial with integer coefficients;
D O I
10.1016/j.topol.2019.107000
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By an automorphism of a topological group G we mean an isomorphism of G onto itself which is also a homeomorphism. In this article, we study the automorphism group Aut(G) of a dense subgroup G of R-n, n >= 1. We show that Aut(G) can be naturally identified with the subgroup Phi(G) ={A is an element of GL(n, R) : G center dot A = G} of the group GL(n, R) of all non-degenerated (n x n)-matrices with real coefficients, where G center dot A ={g center dot A : g is an element of G}. We describe Phi(G) for many dense subgroups G of either R or R-2. We consider also an inverse problem of which symmetric subgroups of GL(n, R) can be realized as Phi(G) for some dense subgroup G of R-n. For n >= 2, we show that any subgroup H of GL(n, R) satisfying SO(n, R) subset of H subset of GL(n, R) cannot be realized in this way. (Here SO(n, R) denotes the special orthogonal group of dimension n.) The realization problem is quite non-trivial even in the one-dimensional case and has deep connections to number theory. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] DENSE SUBGROUPS OF THE AUTOMORPHISM-GROUPS OF FREE ALGEBRAS
    BRYANT, RM
    DRENSKY, V
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (06): : 1135 - 1154
  • [2] Dense locally finite subgroups of automorphism groups of ultraextensive spaces
    Etedadialiabadi, Mahmood
    Gao, Su
    Le Maitre, Francois
    Melleray, Julien
    ADVANCES IN MATHEMATICS, 2021, 391
  • [3] Dense free subgroups of automorphism groups of homogeneous partially ordered sets
    Glab, Szymon
    Gordinowicz, Przemyslaw
    Strobin, Filip
    FORUM MATHEMATICUM, 2019, 31 (01) : 215 - 240
  • [4] On dense free subgroups of the automorphism group
    Kudaǐbergenov K.Z.
    Siberian Advances in Mathematics, 2014, 24 (1) : 43 - 46
  • [5] On normal subgroups in automorphism groups
    Moeller, Philip
    Varghese, Olga
    JOURNAL OF GROUP THEORY, 2025, 28 (01) : 1 - 50
  • [6] CHARACTERISTIC SUBGROUPS AND COMPLETE AUTOMORPHISM GROUPS
    DYER, JL
    FORMANEK, E
    AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (04) : 713 - 753
  • [7] Subgroups and quotients of automorphism groups of RAAGs
    Charney, Ruth
    Vogtmann, Karen
    LOW-DIMENSIONAL AND SYMPLECTIC TOPOLOGY, 2011, 82 : 9 - +
  • [8] On maximal proper subgroups of field automorphism groups
    Rovinsky, M.
    SELECTA MATHEMATICA-NEW SERIES, 2009, 15 (02): : 343 - 376
  • [9] Automorphism groups of linear spaces and their parabolic subgroups
    Li, Huiling
    Liu, Yu
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (01) : 1 - 11
  • [10] Perfect groups and normal subgroups related to an automorphism
    Masoumeh Ganjali
    Ahmad Erfanian
    Ricerche di Matematica, 2017, 66 : 407 - 413