Interlayer correlated fractional quantum Hall state in the v=4/5 bilayer system

被引:1
|
作者
Wang, Hao [1 ,2 ]
Seidel, Alexander [3 ]
Yang, Kun [4 ,5 ]
Zhang, Fu-Chun [6 ,7 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
[2] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Guangdong, Peoples R China
[3] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[4] Florida State Univ, Phys Dept, Tallahassee, FL 32310 USA
[5] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
[6] Univ Chinese Acad Sci, Kavli Inst Theoret Sci, Beijing 100190, Peoples R China
[7] Univ Chinese Acad Sci, CAS Ctr Topol Quantum Computat, Beijing 100190, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
PHASE;
D O I
10.1103/PhysRevB.100.245122
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We perform exact diagonalization studies for fractional quantum Hall states at filling factor 4/5 in a bilayer system, on a torus with various aspect ratios and angles. We find that in the absence of tunneling, two weakly coupled 2/5 layers undergo a phase transition into an interlayer-correlated regime, which is also Abelian with the fivefold degeneracy on the torus. In the limit of zero layer separation, this phase becomes a singlet in the pseudospin variable describing the layer degree of freedom. By studying the Chern-number matrix, we show that the K matrix describing the interlayer-correlated regime requires a matrix dimension larger than two and this regime is in particular not described by a Halperin state. A detailed analysis of possible 4 x 4 K matrices having the requisite symmetries and quantum numbers shows that there is only one equivalence class of such matrices. A model wave function representing this universality class is constructed. The role of separate particle number conservation in both layers is discussed, and it is argued that this additional symmetry allows for the further distinction of two different symmetry-protected Abelian phases in the interlayer correlated regime. Interlayer tunneling breaks this symmetry and can drive the system into a single-layer regime when strong enough. A qualitative phase diagram in the tunneling-layer separation parameter space is proposed based on our numerical results.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Interlayer quantum coherence and anomalous stability of v=1 bilayer quantum Hall state
    Sawada, A
    Ezawa, ZF
    Ohno, H
    Horikoshi, Y
    Kishimoto, S
    Matsukura, F
    Ohno, Y
    Yasumoto, M
    Urayama, A
    PHYSICA B-CONDENSED MATTER, 1998, 249 : 836 - 840
  • [2] Explanation of v =-1/2 fractional quantum Hall state in bilayer graphene
    Jacak, J.
    Jacak, L.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2186):
  • [3] Tunnel transport and interlayer excitons in bilayer fractional quantum Hall systems
    Zhang, Yuhe
    Jain, J. K.
    Eisenstein, J. P.
    PHYSICAL REVIEW B, 2017, 95 (19)
  • [4] Local charge of the v = 5/2 fractional quantum Hall state
    Venkatachalam, Vivek
    Yacoby, Amir
    Pfeiffer, Loren
    West, Ken
    NATURE, 2011, 469 (7329) : 185 - 188
  • [5] SU(4) quantum coherence and interlayer tunneling in bilayer quantum Hall systems
    Ezawa, ZF
    Hasebe, K
    Sawada, A
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 12 (1-4): : 24 - 27
  • [6] Unraveling the Spin Polarization of the v=5/2 Fractional Quantum Hall State
    Tiemann, L.
    Gamez, G.
    Kumada, N.
    Muraki, K.
    SCIENCE, 2012, 335 (6070) : 828 - 831
  • [7] DISORDERING OF THE CORRELATED STATE OF THE QUANTUM HALL BILAYER AT FILLING FACTOR ν=1
    Papic, Z.
    Milovanovic, M. V.
    MODERN PHYSICS LETTERS B, 2012, 26 (21):
  • [8] Quantum Phase Transitions and the v=5/2 Fractional Hall State in Wide Quantum Wells
    Papic, Z.
    Haldane, F. D. M.
    Rezayi, E. H.
    PHYSICAL REVIEW LETTERS, 2012, 109 (26)
  • [9] Ground state of v=1 bilayer quantum Hall systems
    Shibata, N
    Yoshioka, D
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (04)
  • [10] PHASE DIAGRAM OF THE v=2 BILAYER QUANTUM HALL STATE
    Fukuda, A.
    Sawada, A.
    Iwata, K.
    Kozumi, S.
    Terasawa, D.
    Shimoda, Y.
    Ezawa, Z. F.
    Kumada, N.
    Hirayama, Y.
    CONTROLLABLE QUANTUM STATES: MESOSCOPIC SUPERCONDUCTIVITY AND SPRINTRONICS, 2008, : 395 - +