A hierarchical feature fusion framework for adaptive visual tracking

被引:9
|
作者
Makris, Alexandros [1 ,2 ]
Kosmopoulos, Dimitrios [1 ]
Perantonis, Stavros [1 ]
Theodoridis, Sergios [2 ]
机构
[1] NCSR Demokritos, Inst Informat & Telecommun, Computat Intelligence Lab, Athens 15310, Greece
[2] Univ Athens, Dept Informat, GR-15771 Athens, Greece
关键词
Visual tracking; Particle filter; Sequential Monte-Carlo; PARTICLE; MOTION;
D O I
10.1016/j.imavis.2011.07.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A Hierarchical Model Fusion (HMF) framework for object tracking in video sequences is presented. The Bayesian tracking equations are extended to account for multiple object models. With these equations as a basis a particle filter algorithm is developed to efficiently cope with the multi-modal distributions emerging from cluttered scenes. The update of each object model takes place hierarchically so that the lower dimensional object models, which are updated first, guide the search in the parameter space of the subsequent object models to relevant regions thus reducing the computational complexity. A method for object model adaptation is also developed. We apply the proposed framework by fusing salient points, blobs, and edges as features and verify experimentally its effectiveness in challenging conditions. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:594 / 606
页数:13
相关论文
共 50 条
  • [1] Hierarchical feature fusion for visual tracking
    Makris, Alexandros
    Kosmopoulos, Dimitrios
    Perantonis, Stavros
    Theodoridis, Sergios
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 3085 - +
  • [2] Adaptive feature fusion for visual object tracking
    Zhao, Shaochuan
    Xu, Tianyang
    Wu, Xiao-Jun
    Zhu, Xue-Feng
    PATTERN RECOGNITION, 2021, 111
  • [3] Adaptive Hyper-Feature Fusion for Visual Tracking
    Chen, Zhi
    Du, Yongzhao
    Deng, Jianhua
    Zhuang, Jiafu
    Liu, Peizhong
    IEEE ACCESS, 2020, 8 : 68711 - 68724
  • [4] Visual Perception based Adaptive Feature Fusion for Visual Object Tracking
    Krieger, Evan
    Asari, Vijayan K.
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 1345 - 1350
  • [5] Adaptive cascaded and parallel feature fusion for visual object tracking
    Jun Wang
    Sixuan Li
    Kunlun Li
    Qizhen Zhu
    The Visual Computer, 2024, 40 : 2119 - 2138
  • [6] Adaptive Correlation Filters Feature Fusion Learning for Visual Tracking
    Yu, Hongtao
    Zhu, Pengfei
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2021, PT V, 2021, 12895 : 652 - 664
  • [7] Adaptive cascaded and parallel feature fusion for visual object tracking
    Wang, Jun
    Li, Sixuan
    Li, Kunlun
    Zhu, Qizhen
    VISUAL COMPUTER, 2024, 40 (03): : 2119 - 2138
  • [8] Feature integration for adaptive visual tracking in a particle filtering framework
    Komeili, M.
    Armanfard, N.
    Valizadeh, M.
    Kabir, E.
    2009 14TH INTERNATIONAL COMPUTER CONFERENCE, 2009, : 115 - 120
  • [9] Domain Adaptive Visual Tracking with Mullti-Scale Feature Fusion
    Yu, Qian-qian
    Wang, Yi-yang
    Fan, Ke-qi
    Zheng, Yu-hui
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2021, : 137 - 143
  • [10] Multi-Feature Fusion in Particle Filter Framework for Visual Tracking
    Bhat, Pranab Gajanan
    Subudhi, Badri Narayan
    Veerakumar, T.
    Laxmi, Vijay
    Gaur, Manoj Singh
    IEEE SENSORS JOURNAL, 2020, 20 (05) : 2405 - 2415