Effect of the heat treatment on the microstructure and hardness evolution of a AlSi10MgCu alloy designed for laser powder bed fusion

被引:16
|
作者
Martin, A. [1 ]
San Sebastian, M. [2 ]
Gil, E. [2 ]
Wang, C. Y. [3 ]
Milenkovic, S. [1 ]
Perez-Prado, M. T. [1 ]
Cepeda-Jimenez, C. M. [4 ,5 ]
机构
[1] IMDEA Mat Inst, C Eric Kandel 2, Madrid 28906, Spain
[2] LORTEK S Coop Technol Ctr, Arranomendia 4A, Ordizia 20240, Spain
[3] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[4] Ctr Nacl Invest Metalurg CENIM CSIC, Dept Phys Met, Avda Gregorio Amo 8, Madrid 28040, Spain
[5] CENIM CSIC, Dept Phys Met, Avda Gregorio Amo 8, Madrid 28040, Spain
基金
欧盟地平线“2020”;
关键词
Aluminium; Laser powder bed fusion; Additive manufacturing; Microstructure; Precipitation hardening; SINTERING/MELTING SLS/SLM; MECHANICAL-PROPERTIES; CU ALLOYS; AL; PRECIPITATION; BEHAVIOR; STRENGTH; MG; TEMPERATURE;
D O I
10.1016/j.msea.2021.141487
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The aim of this work is to investigate the influence of the addition of Cu on the microstructure and on the microhardness of a laser powder bed fusion (L-PBF)-fabricated AlSi10MgCu alloy. With this goal, AlSi10Mg+4 wt%Cu pre-alloyed powder was produced by gas atomization. Following a parameter optimization study, dense as-built specimens with a high relative density of 99.8% were fabricated. An outstanding microhardness value, exceeding 180 HV, was obtained after aging at 160 degrees C for 16 h. This value is similar to that of the high strength Al 7075 in the T6 condition. With the aid of analytical transmission electron microscopy, it was concluded that the origin of the observed excellent mechanical behavior could be attributed to the beneficial effect of Cu in reducing the Al-matrix cell size, and in increasing the density and decreasing the size of the Si-based nanoprecipitates at cell interiors. More specifically, it is proposed that the maximum hardness is associated to the development of Cu-rich GP-I zones, which act as precursors of Si nanoprecipitates. Overaging leads to a reduction in microhardness due to transformation of these GP-I zones into coarser theta" precipitates and thus to a smaller volume fraction of larger Si-based nanoparticles.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Effect of heat treatment on microstructural evolution and hardness homogeneity in laser powder bed fusion of alloy 718
    Jiang, Runbo
    Mostafaei, Amir
    Wu, Ziheng
    Choi, Ann
    Guan, Pin-Wen
    Chmielus, Markus
    Rollett, Anthony D.
    ADDITIVE MANUFACTURING, 2020, 35
  • [2] The Effect of the Iso-Thermal Heat Treatment on the Microstructure and Properties of Powder Bed Fusion-Laser Beam AlSi10Mg Alloy
    Katti, Indrajeet
    Zhang, Duyao
    Qiu, Dong
    Weiss, Matthias
    Forsmark, Joy H.
    Easton, Mark
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (12)
  • [3] Effect of heat treatment on microstructure and mechanical properties of AlSi10Mg fabricated using laser powder bed fusion
    Huang, Nancy
    Luo, Qixiang
    Bartles, Dean L.
    Simpson, Timothy W.
    Beese, Allison M.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 895
  • [4] Effect of Heat Treatment on Gradient Microstructure of AlSi10Mg Lattice Structure Manufactured by Laser Powder Bed Fusion
    Liu, Mulin
    Takata, Naoki
    Suzuki, Asuka
    Kobashi, Makoto
    MATERIALS, 2020, 13 (11)
  • [5] Effect of heat treatment on the impact toughness and thermal properties of the AlSi10Mg alloy manufactured by laser powder bed fusion
    R. Kreethi
    Yongho Sohn
    Kee-Ahn Lee
    Progress in Additive Manufacturing, 2024, 9 : 543 - 551
  • [6] Effect of heat treatment on the impact toughness and thermal properties of the AlSi10Mg alloy manufactured by laser powder bed fusion
    Kreethi, R.
    Sohn, Yongho
    Lee, Kee-Ahn
    PROGRESS IN ADDITIVE MANUFACTURING, 2024, 9 (02) : 543 - 551
  • [7] Understanding the Laser Powder Bed Fusion of AlSi10Mg Alloy
    Holden Hyer
    Le Zhou
    Sharon Park
    Guilherme Gottsfritz
    George Benson
    Bjorn Tolentino
    Brandon McWilliams
    Kyu Cho
    Yongho Sohn
    Metallography, Microstructure, and Analysis, 2020, 9 : 484 - 502
  • [8] Understanding the Laser Powder Bed Fusion of AlSi10Mg Alloy
    Hyer, Holden
    Zhou, Le
    Park, Sharon
    Gottsfritz, Guilherme
    Benson, George
    Tolentino, Bjorn
    McWilliams, Brandon
    Cho, Kyu
    Sohn, Yongho
    METALLOGRAPHY MICROSTRUCTURE AND ANALYSIS, 2020, 9 (04) : 484 - 502
  • [9] Corrosion in laser powder bed fusion AlSi10Mg alloy
    Laieghi, Hossein
    Kvvssn, Varma
    Butt, Muhammad Muteeb
    Ansari, Peyman
    Salamci, Metin U.
    Patterson, Albert E.
    Salamci, Elmas
    ENGINEERING REPORTS, 2024, 6 (10)
  • [10] Dry sliding behavior of AlSi10Mg alloy produced by Laser-based Powder Bed Fusion: influence of heat treatment and microstructure
    Di Egidio, G.
    Martini, C.
    Borjesson, J.
    Ghassemali, E.
    Ceschini, L.
    Morri, A.
    WEAR, 2023, 516