Real-Time Anomaly Detection from Environmental Data Streams

被引:5
|
作者
Trilles, Sergio [1 ]
Schade, Sven [2 ]
Belmonte, Oscar [1 ]
Huerta, Joaquin [1 ]
机构
[1] Univ Jaume 1, Inst New Imaging Technol, Castellon De La Plana, Spain
[2] European Commiss, Joint Res Ctr, Inst Environm & Sustainabil, Ispra, Italy
关键词
Big data and real-time analysis; Environmental sensor data; CUSUM; STORM; CUSUM;
D O I
10.1007/978-3-319-16787-9_8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Modern sensor networks monitor a wide range of phenomena. They are applied in environmental monitoring, health care, optimization of industrial processes, social media, smart city solutions, and many other domains. All in all, they provide a continuously pulse of the almost infinite activities that are happening in the physical space-and in cyber space. The handling of the massive amounts of generated measurements poses a series of (Big Data) challenges. Our work addresses one of these challenges: the detection of anomalies in real-time. In this paper, we propose a generic solution to this problem, and introduce a system that is capable of detecting anomalies, generating notifications, and displaying the recent situation to the user. We apply CUSUM a statistical control algorithm and adopt it so that it can be used inside the Storm framework-a robust and scalable real-time processing framework. We present a proof of concept implementation from the area of environmental monitoring.
引用
收藏
页码:125 / 144
页数:20
相关论文
共 50 条
  • [1] Real-Time Anomaly Detection in Edge Streams
    Bhatia, Siddharth
    Liu, Rui
    Hooi, Bryan
    Yoon, Minji
    Shin, Kijung
    Faloutsos, Christos
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2022, 16 (04)
  • [2] Survey on Real-time Anomaly Detection Technology for Big Data Streams
    Luo, Yuanvan
    Du, Xuehui
    Sun, Yi
    PROCEEDINGS OF 2018 12TH IEEE INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION (ASID), 2018, : 26 - 30
  • [3] An ML Based Anomaly Detection System in real-time data streams
    Diaz Rivera, Javier Jose
    Khan, Talha Ahmed
    Akbar, Waleed
    Afaq, Muhammad
    Song, Wang-Cheol
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2021), 2021, : 1329 - 1334
  • [4] Real-time Bayesian anomaly detection in streaming environmental data
    Hill, David J.
    Minsker, Barbara S.
    Amir, Eyal
    WATER RESOURCES RESEARCH, 2009, 45
  • [5] Anomaly Detection and Approximate Similarity Searches of Transients in Real-time Data Streams
    Aleo, P. D.
    Engel, A. W.
    Narayan, G.
    Angus, C. R.
    Malanchev, K.
    Auchettl, K.
    Baldassare, V. F.
    Berres, A.
    de Boer, T. J. L.
    Boyd, B. M.
    Chambers, K. C.
    Davis, K. W.
    Esquivel, N.
    Farias, D.
    Foley, R. J.
    Gagliano, A.
    Gall, C.
    Gao, H.
    Gomez, S.
    Grayling, M.
    Jones, D. O.
    Lin, C. -C.
    Magnier, E. A.
    Mandel, K. S.
    Matheson, T.
    Raimundo, S. I.
    Shah, V. G.
    Soraisam, M. D.
    de Soto, K. M.
    Vicencio, S.
    Villar, V. A.
    Wainscoat, R. J.
    ASTROPHYSICAL JOURNAL, 2024, 974 (02):
  • [6] Real-Time Sentiment-Based Anomaly Detection in Twitter Data Streams
    Patel, Khantil
    Hoeber, Orland
    Hamilton, Howard J.
    ADVANCES IN ARTIFICIAL INTELLIGENCE (AI 2015), 2015, 9091 : 196 - 203
  • [7] Processing of massive audit data streams for real-time anomaly intrusion detection
    Wang, Wei
    Guan, Xiaohong
    Zhang, Xiangliang
    COMPUTER COMMUNICATIONS, 2008, 31 (01) : 58 - 72
  • [8] A framework for scalable real-time anomaly detection over voluminous, geospatial data streams
    Budgaga, Walid
    Malensek, Matthew
    Pallickara, Sangmi Lee
    Pallickara, Shrideep
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2017, 29 (12):
  • [9] Real-time change detection in data streams with FPGAs
    Vega, J.
    Dormido-Canto, S.
    Cruz, T.
    Ruiz, M.
    Barrera, E.
    Castro, R.
    Murari, A.
    Ochando, M.
    FUSION ENGINEERING AND DESIGN, 2014, 89 (05) : 644 - 648
  • [10] Real-time Event Detection on Social Data Streams
    Fedoryszak, Mateusz
    Frederick, Brent
    Rajaram, Vijay
    Zhong, Changtao
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2774 - 2782