共 50 条
The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit
被引:147
|作者:
Murugan, Karthik
[1
]
Babu, Kesavan
[2
]
Sundaresan, Ramya
[2
]
Rajan, Rakhi
[2
]
Sashital, Dipali G.
[1
]
机构:
[1] Iowa State Univ, Roy J Carver Dept Biochem Biophys & Mol Biol, 2437 Pammel Dr, Ames, IA 50011 USA
[2] Univ Oklahoma, Stephenson Life Sci Res Ctr, Dept Chem & Biochem, 101 Stephenson Pkwy, Norman, OK 73019 USA
基金:
美国国家科学基金会;
关键词:
GENOME-WIDE SPECIFICITIES;
RNA-GUIDED ENDONUCLEASE;
R-LOOP COMPLEX;
STRUCTURAL BASIS;
CRYSTAL-STRUCTURE;
PAM RECOGNITION;
DNA CLEAVAGE;
CPF1;
NUCLEASES;
IMMUNITY;
D O I:
10.1016/j.molcel.2017.09.007
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
CRISPR-Cas systems defend prokaryotes against bacteriophages and mobile genetic elements and serve as the basis for revolutionary tools for genetic engineering. Class 2 CRISPR-Cas systems use single Cas endonucleases paired with guide RNAs to cleave complementary nucleic acid targets, enabling programmable sequence-specific targeting with minimal machinery. Recent discoveries of previously unidentified CRISPR-Cas systems have uncovered a deep reservoir of potential biotechnological tools beyond the well-characterized Type II Cas9 systems. Here we review the current mechanistic understanding of newly discovered single-protein Cas endonucleases. Comparison of these Cas effectors reveals substantial mechanistic diversity, underscoring the phylogenetic divergence of related CRISPR-Cas systems. This diversity has enabled further expansion of CRISPR-Cas biotechnological toolkits, with wide-ranging applications from genome editing to diagnostic tools based on various Cas endonuclease activities. These advances highlight the exciting prospects for future tools based on the continually expanding set of CRISPR-Cas systems.
引用
收藏
页码:15 / 25
页数:11
相关论文