The Morse-Sard theorem gives conditions under which the set of critical values of a function between Euclidean spaces has Lebesgue measure zero. Over the years the result has been extended and strengthened in various ways. We present a result, along with a simple proof, that subsumes many of these generalizations. We also review methods of constructing examples showing that differentiability hypotheses cannot be weakened, and we construct a complete set of examples for our result. (C) 2021 Elsevier GmbH. All rights reserved.
机构:
Inst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, BrazilInst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
Moreira, Carlos Gustavo
Soares Ruas, Maria Aparecida
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Dept Matemat, Inst Ciencias Matemat & Computacao, BR-13560970 Sao Carlos, SP, BrazilInst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
机构:
Univ Pau & Pays Adour, UMR CNRS 5142, Lab Math & Leurs Applicat, F-64013 Pau, FranceUniv Pau & Pays Adour, UMR CNRS 5142, Lab Math & Leurs Applicat, F-64013 Pau, France
Barbet, Luc
Dambrine, Marc
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pau & Pays Adour, UMR CNRS 5142, Lab Math & Leurs Applicat, F-64013 Pau, FranceUniv Pau & Pays Adour, UMR CNRS 5142, Lab Math & Leurs Applicat, F-64013 Pau, France
Dambrine, Marc
Daniilidis, Aris
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chile, Fac Ciencias, DIM CMM, Santiago, ChileUniv Pau & Pays Adour, UMR CNRS 5142, Lab Math & Leurs Applicat, F-64013 Pau, France