Highly edge-connected regular graphs without large factorizable subgraphs

被引:4
|
作者
Mattiolo, Davide [1 ]
Steffen, Eckhard [2 ,3 ]
机构
[1] Univ Verona, Dipartimento Informat, Str Grazie 15, I-37134 Verona, Italy
[2] Paderborn Univ, Paderborn Ctr Adv Studies, Paderborn, Germany
[3] Paderborn Univ, Inst Math, Paderborn, Germany
关键词
factorizations; perfect matchings; regular graphs;
D O I
10.1002/jgt.22729
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct highly edge-connected r-regular graphs of even order which do not contain r - 2 pairwise disjoint perfect matchings. When r is a multiple of 4, the result solves a problem of Thomassen [4].
引用
收藏
页码:107 / 116
页数:10
相关论文
共 50 条
  • [1] Super-cyclically edge-connected regular graphs
    Zhou, Jin-Xin
    Feng, Yan-Quan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 26 (02) : 393 - 411
  • [2] Highly edge-connected detachments of graphs and digraphs
    Berg, AR
    Jackson, B
    Jordán, T
    JOURNAL OF GRAPH THEORY, 2003, 43 (01) : 67 - 77
  • [3] Super-cyclically edge-connected regular graphs
    Jin-Xin Zhou
    Yan-Quan Feng
    Journal of Combinatorial Optimization, 2013, 26 : 393 - 411
  • [4] Edge fault-tolerance analysis of maximally edge-connected graphs and super edge-connected graphs
    Zhao, Shuang
    Chen, Zongqing
    Yang, Weihua
    Meng, Jixiang
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2021, 115 : 64 - 72
  • [5] Equitable factorizations of edge-connected graphs
    Hasanvand, Morteza
    DISCRETE APPLIED MATHEMATICS, 2022, 317 : 136 - 145
  • [6] ON THE NUMBER OF CONNECTED SUBGRAPHS WITH SMALL EDGE-BOUNDARY IN REGULAR GRAPHS
    KOSTOCHKA, AV
    RANDOM STRUCTURES & ALGORITHMS, 1994, 5 (01) : 147 - 154
  • [7] Decomposing highly edge-connected graphs into paths of any given length
    Botler, F.
    Mota, G. O.
    Oshiro, M. T. I.
    Wakabayashi, Y.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 122 : 508 - 542
  • [8] Decomposing highly edge-connected graphs into homomorphic copies of a fixed tree
    Merker, Martin
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 122 : 91 - 108
  • [9] Super-connected but not super edge-connected graphs
    Zhou, Jin-Xin
    Feng, Yan-Quan
    INFORMATION PROCESSING LETTERS, 2010, 111 (01) : 22 - 25
  • [10] Vulnerability of super extra edge-connected graphs
    Cheng, Chia-Wen
    Hsieh, Sun-Yuan
    Klasing, Ralf
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2020, 108 : 1 - 9