Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials

被引:211
|
作者
Luo, QM
Srivastava, HM [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
[2] Jiaozuo Univ, Dept Math, Jiaozuo City 454003, Henan, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Bernoulli polynomials; Apostol-Bemoulli polynomials; Apostol-Bemoulli polynomials of higher order; Apostol-Euler polynomials; Apostol-Euler polynomials of higher order; Gaussian hypergeometric function; stirling numbers of the second kind; Hurwitz (or generalized) Zeta function; Hurwitz-Lerch and Lipschitz-Lerch Zeta functions; Lerch's functional equation;
D O I
10.1016/j.jmaa.2005.01.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main object of this paper is to give analogous definitions of Apostol type (see [T.M. Apostol, On the Lerch Zeta function, Pacific J. Math. 1 (1951) 161-167] and [H.M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc. 129 (2000) 77-84]) for the so-called Apostol-Bernoulli numbers and polynomials of higher order. We establish their elementary properties, derive several explicit representations for them in terms of the Gaussian hypergeometric function and the Hurwitz (or generalized) Zeta function, and deduce their special cases and applications which are shown here to lead to the corresponding results for the classical Bernoulli numbers and polynomials of higher order. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:290 / 302
页数:13
相关论文
共 50 条
  • [1] Some results on the Apostol-Bernoulli and Apostol-Euler polynomials
    Wang, Weiping
    Jia, Cangzhi
    Wang, Tianming
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (06) : 1322 - 1332
  • [2] Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials
    Luo, QM
    Srivastava, HM
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (3-4) : 631 - 642
  • [3] Some Formulae of Products of the Apostol-Bernoulli and Apostol-Euler Polynomials
    He, Yuan
    Wang, Chunping
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [4] SOME NEW GENERALIZATIONS AND APPLICATIONS OF THE APOSTOL-BERNOULLI, APOSTOL-EULER AND APOSTOL-GENOCCHI POLYNOMIALS
    Srivastava, H. M.
    Masjed-Jamei, M.
    Beyki, M. R.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (02) : 681 - 697
  • [5] SOME REMARKS ON THE GENERALIZED APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS
    Boutiche, Mohamed Amine
    Kargin, Levent
    Rahmani, Mourad
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2019, 50 (04): : 1133 - 1145
  • [6] A note on the Apostol-Bernoulli and Apostol-Euler polynomials
    Kim, Min-Soo
    Hu, Su
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 83 (03): : 449 - 464
  • [7] Some remarks on the generalized Apostol-Bernoulli and Apostol-Euler polynomials
    Mohamed Amine Boutiche
    Levent Kargin
    Mourad Rahmani
    Indian Journal of Pure and Applied Mathematics, 2019, 50 : 1133 - 1145
  • [8] ASYMPTOTIC ESTIMATES FOR APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS
    Navas, Luis M.
    Ruiz, Francisco J.
    Varona, Juan L.
    MATHEMATICS OF COMPUTATION, 2012, 81 (279) : 1707 - 1722
  • [9] Sums of products of Apostol-Bernoulli and Apostol-Euler polynomials
    Yuan He
    Serkan Araci
    Advances in Difference Equations, 2014
  • [10] Elliptic extensions of the Apostol-Bernoulli and Apostol-Euler polynomials
    Luo, Qiu-Ming
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 261 : 156 - 166