Fresh Noncultured Endothelial Progenitor Cells Improve Neonatal Lung Hyperoxia-Induced Alveolar Injury

被引:5
|
作者
Firsova, Alexandra B. [1 ]
Bird, Daniel [1 ]
Abebe, Degu [1 ]
Ng, Judy [1 ]
Mollard, Richard [1 ,2 ]
Cole, Timothy J. [1 ]
机构
[1] Monash Univ, Dept Biochem & Mol Biol, Clayton, Vic 3800, Australia
[2] Univ Melbourne, Dept Vet & Agr Sci, Parkville, Vic 3052, Australia
基金
澳大利亚国家健康与医学研究理事会;
关键词
Hyperoxia; Cell therapy; Endothelial progenitor cells; Bone marrow; Lung injury; Alveolarization; Fresh cells; Cultured cells; Side effects; MESENCHYMAL STEM-CELLS; BONE-MARROW; GROWTH; REPAIR; CONTRIBUTE; MODEL; TRANSPLANTATION; VASCULOGENESIS; ROLES;
D O I
10.1002/sctm.17-0093
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Treatment of preterm human infants with high oxygen can result in disrupted lung alveolar and vascular development. Local or systemic administration of endothelial progenitor cells (EPCs) is reported to remedy such disruption in animal models. In this study, the effects of both fresh (enriched for KDR) and cultured bone marrow (BM)-derived cell populations with EPC characteristics were examined following hyperoxia in neonatal mouse lungs. Intraperitoneal injection of fresh EPCs into five-day-old mice treated with 90% oxygen resulted in full recovery of hyperoxia-induced alveolar disruption by 56 days of age. Partial recovery in septal number following hyperoxia was observed following injection of short-term cultured EPCs, yet aberrant tissue growths appeared following injection of long-term cultured cells. Fresh and long-term cultured cells had no impact on blood vessel development. Short-term cultured cells increased blood vessel number in normoxic and hyperoxic mice by 28 days but had no impact on day 56. Injection of fresh EPCs into normoxic mice significantly reduced alveolarization compared with phosphate buffered saline-injected normoxic controls. These results indicate that fresh BM EPCs have a higher and safer corrective profile in a hyperoxia-induced lung injury model compared with cultured BM EPCs but may be detrimental to the normoxic lung. The appearance of aberrant tissue growths and other side effects following injection of cultured EPCs warrants further investigation.
引用
收藏
页码:2094 / 2105
页数:12
相关论文
共 50 条
  • [1] Therapy for Neonatal Hyperoxia-induced Lung Injury
    Chen, Chung-Ming
    PEDIATRICS AND NEONATOLOGY, 2014, 55 (05): : 329 - 330
  • [2] Alveolar cell death in hyperoxia-induced lung injury
    Pagano, A
    Barazzone-Argiroffo, C
    APOPTOSIS: FROM SIGNALING PATHWAYS TO THERAPEUTIC TOOLS, 2003, 1010 : 405 - 416
  • [3] Human induced pluripotent stem cell-derived lung progenitor and alveolar epithelial cells attenuate hyperoxia-induced lung injury
    Shafa, Mehdi
    Ionescu, Lavinia Iuliana
    Vadivel, Arul
    Collins, Jennifer J. P.
    Xu, Liqun
    Zhong, Shumei
    Kang, Martin
    De Caen, Genevieve
    Daneshmand, Manijeh
    Shi, Jenny
    Fu, Katherine Z.
    Qi, Andrew
    Wang, Ying
    Ellis, James
    Stanford, William L.
    Thebaud, Bernard
    CYTOTHERAPY, 2018, 20 (01) : 108 - 125
  • [4] Role of Fatty Acid Oxidation in Hyperoxia-induced Apoptosis in Neonatal Lung Endothelial Cells: Implications for Lung Injury and Repair
    Yao, Hongwei
    Zhao, Haifeng
    Peterson, Abigail L.
    Dennery, Phyllis A.
    FREE RADICAL BIOLOGY AND MEDICINE, 2017, 112 : 179 - 179
  • [5] Combined iNO and endothelial progenitor cells improve lung alveolar and vascular structure in neonatal rats exposed to prolonged hyperoxia
    Lu, Aizhen
    Sun, Bo
    Qian, Liling
    PEDIATRIC RESEARCH, 2015, 77 (06) : 784 - 792
  • [6] Combined iNO and endothelial progenitor cells improve lung alveolar and vascular structure in neonatal rats exposed to prolonged hyperoxia
    Aizhen Lu
    Bo Sun
    Liling Qian
    Pediatric Research, 2015, 77 : 784 - 792
  • [7] Molsidomine decreases hyperoxia-induced lung injury in neonatal rats
    Aslan, Mehmet
    Gokce, Ismail Kursat
    Turgut, Hatice
    Tekin, Suat
    Taslidere, Asli Cetin
    Deveci, Mehmet Fatih
    Kaya, Huseyin
    Tanbek, Kevser
    Gul, Cemile Ceren
    Ozdemir, Ramazan
    PEDIATRIC RESEARCH, 2023, 94 (04) : 1341 - 1348
  • [8] The Effects of Resveratrol on Hyperoxia-induced Lung Injury in Neonatal Rats
    Ozdemir, Ozmert M. A.
    Gozkeser, Ersin
    Bir, Ferda
    Yenisey, Cigdem
    PEDIATRICS AND NEONATOLOGY, 2014, 55 (05): : 352 - 357
  • [9] Molsidomine decreases hyperoxia-induced lung injury in neonatal rats
    Mehmet Aslan
    Ismail Kursat Gokce
    Hatice Turgut
    Suat Tekin
    Asli Cetin Taslidere
    Mehmet Fatih Deveci
    Huseyin Kaya
    Kevser Tanbek
    Cemile Ceren Gul
    Ramazan Ozdemir
    Pediatric Research, 2023, 94 : 1341 - 1348
  • [10] Pentoxifylline and prevention of hyperoxia-induced lung injury in neonatal rats
    Almario, Beatriz
    Wu, Shu
    Peng, Jinghong
    Alapati, Deepthi
    Chen, Shaoyi
    Sosenko, Ilene R. S.
    PEDIATRIC RESEARCH, 2012, 71 (05) : 583 - 589