The Lp boundary value problems on Lipschitz domains

被引:75
|
作者
Shen, Zhongwei [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
elliptic systems; biharmonic equation; neumann problem; dirichlet problem; lipschitz domains;
D O I
10.1016/j.aim.2007.05.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a bounded Lipschitz domain in R-n. We develop a new approach to the invertibility on L-p (partial derivative Omega) of the layer potentials associated with elliptic equations and systems in Omega. As a consequence, for n >= 4 and 2(n - 1)/(n + 1) - epsilon < p < 2 where epsilon > 0 depends on Omega, we obtain the solvability of the L-p Neumann type boundary value problems for second order elliptic systems. The analogous results for the biharmonic equation are also established. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:212 / 254
页数:43
相关论文
共 50 条