From Diffusive to Ballistic Transport in Etched Graphene Constrictions and Nanoribbons

被引:12
|
作者
Somanchi, Sowmya [1 ,2 ]
Terres, Bernat [1 ,2 ,3 ]
Peiro, Julian [1 ,2 ]
Staggenborg, Maximilian [1 ,2 ]
Watanabe, Kenji [4 ]
Taniguchi, Takashi [4 ]
Beschoten, Bernd [1 ,2 ]
Stampfer, Christoph [1 ,2 ,3 ]
机构
[1] Rhein Westfal TH Aachen, JARA FIT, D-52074 Aachen, Germany
[2] Rhein Westfal TH Aachen, Inst Phys 2, D-52074 Aachen, Germany
[3] Forschungszentrum Julich, Peter Grunberg Inst PGI 9, Julich, Germany
[4] Natl Inst Mat Sci, 1-1 Namiki, Tsukuba 3050044, Japan
关键词
Graphene; nanoribbons; ballistic transport; quantum point contact; QUANTUM-DOT BEHAVIOR; ELECTRONIC-PROPERTIES; EDGE STATES; CONDUCTIVITY; SPECTROSCOPY; CONDUCTANCE; FABRICATION; DEVICES; VALVE;
D O I
10.1002/andp.201700082
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Graphene nanoribbons and constrictions are envisaged as fundamental components of future carbon-based nanoelectronic and spintronic devices. At nanoscale, electronic effects in these devices depend heavily on the dimensions of the active channel and the nature of edges. Hence, controlling both these parameters is crucial to understand the physics in such systems. This review is about the recent progress in the fabrication of graphene nanoribbons and constrictions in terms of low temperature quantum transport. In particular, recent advancements using encapsulated graphene allowing for quantized conductance and future experiments towards exploring spin effects in these devices are presented. The influence of charge carrier inhomogeneity and the important length scales which play a crucial role for transport in high quality samples are also discussed.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Ballistic versus diffusive transport in graphene
    Borunda, Mario F.
    Hennig, H.
    Heller, Eric J.
    PHYSICAL REVIEW B, 2013, 88 (12)
  • [2] Energy and transport gaps in etched graphene nanoribbons
    Molitor, F.
    Stampfer, C.
    Guettinger, J.
    Jacobsen, A.
    Ihn, T.
    Ensslin, K.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2010, 25 (03)
  • [3] Exceptional ballistic transport in epitaxial graphene nanoribbons
    Jens Baringhaus
    Ming Ruan
    Frederik Edler
    Antonio Tejeda
    Muriel Sicot
    Amina Taleb-Ibrahimi
    An-Ping Li
    Zhigang Jiang
    Edward H. Conrad
    Claire Berger
    Christoph Tegenkamp
    Walt A. de Heer
    Nature, 2014, 506 : 349 - 354
  • [4] Exceptional ballistic transport in epitaxial graphene nanoribbons
    Baringhaus, Jens
    Ruan, Ming
    Edler, Frederik
    Tejeda, Antonio
    Sicot, Muriel
    Taleb-Ibrahimi, Amina
    Li, An-Ping
    Jiang, Zhigang
    Conrad, Edward H.
    Berger, Claire
    Tegenkamp, Christoph
    de Heer, Walt A.
    NATURE, 2014, 506 (7488) : 349 - 354
  • [5] Crossover from ballistic to diffusive thermal transport in suspended graphene membranes
    El Sachat, A.
    Koenemann, F.
    Menges, F.
    Del Corro, E.
    Garrido, J. A.
    Sotomayor Torres, C. M.
    Alzina, F.
    Gotsmann, B.
    2D MATERIALS, 2019, 6 (02)
  • [6] Tunable band structure effects on ballistic transport in graphene nanoribbons
    Roslyak, O.
    Gumbs, Godfrey
    Huang, Danhong
    PHYSICS LETTERS A, 2010, 374 (39) : 4061 - 4064
  • [7] Crossover of ballistic, hydrodynamic, and diffusive phonon transport in suspended graphene
    Li, Xun
    Lee, Sangyeop
    PHYSICAL REVIEW B, 2019, 99 (08)
  • [8] Ballistic tracks in graphene nanoribbons
    Johannes Aprojanz
    Stephen R. Power
    Pantelis Bampoulis
    Stephan Roche
    Antti-Pekka Jauho
    Harold J. W. Zandvliet
    Alexei A. Zakharov
    Christoph Tegenkamp
    Nature Communications, 9
  • [9] Ballistic tracks in graphene nanoribbons
    Aprojanz, Johannes
    Power, Stephen R.
    Bampoulis, Pantelis
    Roche, Stephan
    Jauho, Antti-Pekka
    Zandvliet, Harold J. W.
    Zakharov, Alexei A.
    Tegenkamp, Christoph
    NATURE COMMUNICATIONS, 2018, 9
  • [10] Ballistic transport of bilayer graphene nanoribbons in a spatially modulated magnetic field
    Li, T. S.
    Hsieh, C. T.
    Yang, S. P.
    Chang, S. C.
    SOLID STATE COMMUNICATIONS, 2015, 206 : 6 - 11