An L0-Norm Regularized Method for Multivariate Time Series Segmentation

被引:1
|
作者
Li, Min [1 ]
Huang, Yu-Mei [1 ]
机构
[1] Lanzhou Univ, Ctr Data Sci, Sch Math & Stat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Multivariate time series; segmentation; L-0-norm; dynamic programming; HIDDEN MARKOV-MODELS; CHANGE-POINTS; PRECONDITIONERS; CHANGEPOINTS; ALGORITHM;
D O I
10.4208/eajam.180921.050122
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A multivariate time series segmentation model based on the minimization of the negative log-likelihood function of the series is proposed. The model is regularized by the L-0-norm of the time series mean change and solved by an alternating process. We use a dynamic programming algorithm in order to determine the breakpoints and the cross-validation method to find the parameters of the model. Experiments show the efficiency of the method for segmenting both synthetic and real multivariate time series.
引用
收藏
页码:353 / 366
页数:14
相关论文
共 50 条
  • [1] Federated Optimization of l0-norm Regularized Sparse Learning
    Tong, Qianqian
    Liang, Guannan
    Ding, Jiahao
    Zhu, Tan
    Pan, Miao
    Bi, Jinbo
    ALGORITHMS, 2022, 15 (09)
  • [2] A Reweighted Symmetric Smoothed Function Approximating L0-Norm Regularized Sparse Reconstruction Method
    Xiang, Jianhong
    Yue, Huihui
    Yin, Xiangjun
    Ruan, Guoqing
    SYMMETRY-BASEL, 2018, 10 (11):
  • [3] l0-norm regularized minimum entropy deconvolution for ultrasonic NDT & E
    Li, Xiang
    Li, Xunbo
    Liang, Wei
    Chen, Liang
    NDT & E INTERNATIONAL, 2012, 47 : 80 - 87
  • [4] L0-Norm Adaptive Volterra Filters
    Yazdanpanah, Hamed
    Carini, Alberto
    Lima, Markus V. S.
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [5] l0-NORM FEATURE LMS ALGORITHMS
    Yazdanpanah, Hamed
    Apolinario, Jose A., Jr.
    Diniz, Paulo S. R.
    Lima, Markus V. S.
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 3111 - 315
  • [6] Compression and denoising using l0-norm
    Andy C. Yau
    Xuecheng Tai
    Michael K. Ng
    Computational Optimization and Applications, 2011, 50 : 425 - 444
  • [7] On the L0-Norm Based Sparse Time-Frequency Distribution Reconstruction
    Volaric, Ivan
    Sucic, Victor
    2018 INTERNATIONAL CONFERENCE ON BROADBAND COMMUNICATIONS FOR NEXT GENERATION NETWORKS AND MULTIMEDIA APPLICATIONS (COBCOM), 2018,
  • [8] COMPLEMENTARITY FORMULATIONS OF l0-NORM OPTIMIZATION PROBLEMS
    Feng, Mingbin
    Mitchell, John E.
    Pang, Jong-Shi
    Shen, Xin
    Wachter, Andreas
    PACIFIC JOURNAL OF OPTIMIZATION, 2018, 14 (02): : 273 - 305
  • [9] L0-Norm and Total Variation for Wavelet Inpainting
    Yau, Andy C.
    Tai, Xue-Cheng
    Ng, Michael K.
    SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, PROCEEDINGS, 2009, 5567 : 539 - +
  • [10] Non-convex TGV regularized l0-norm fidelity model for impulse noise removal
    Sun, Ting
    Liu, Xinwu
    SIGNAL PROCESSING, 2023, 212